非GEO衛星群分析Toolkit4.2
年間契約型資訊服務
商品編碼
1516499

非GEO衛星群分析Toolkit4.2

Non-GEO Constellations Analysis Toolkit 4.2

出版日期: 年間契約型資訊服務 | 出版商: Analysys Mason | 英文

價格
簡介目錄

非GEO衛星群分析工具包第4版(NCAT4)是用於對LEO(低地球軌道)和MEO(中地球軌道)衛星群進行事實評估的分析模型,它結合了硬資料。

NCAT 是用於評估衛星群的易於使用的定量模型的集合。

NCAT 重點關注 LEO/MEO 衛星群的性能,並提供有關頻寬供需趨勢、市場回應能力和業務案例的詳細資訊。也比較了星座與地面網路的競爭格局。

策略師以及業務和技術專家還可以利用 NCAT4 的可配置使用者控制來評估 NGSO 星座的影響。

新發布的 "NCAT v4.2" 提供了更豐富的見解和資料視覺化功能,並可作為線上網路應用程式使用。

更改與新功能

NCAT4 動態處理數百萬個資料點,以公正地計算星座性能指標和功能。所有工具都可以透過篩選器、視覺化控制項和使用者輸入進行設定。

本報告的主要特點:

  • 綜合資料庫:增強的更新周期使用戶能夠輕鬆運行新的模擬。
    • 每日更新:在軌衛星數量(Starlink、SES O3B、OneWeb 等)和軌道觀測結果每天自動更新。
    • 季更新:核心軟體和資料庫增強功能每季進行一次。
  • 正確編碼的演算法:推動基於事實的分析和視覺化。
  • 點擊式互動:互動式地圖和控制項(圖層、篩選器、按鈕、設定)可讓使用者放大和縮小螢幕並點擊以設定終端位置和控制項動態計算和視覺化。
  • 多軌道、多頻段分析:可以使用一個或多個系統的外殼組合來設定模擬,並可以同時對數千顆衛星進行計算。
  • 動態動畫視覺化:傳播條件的即時視覺化,例如衛星位置和足跡、可見衛星、天線視角、鏈路延遲變化以及供需熱圖。
  • 時間/空間控制:NCAT4 允許在全球範圍內、依地區(使用者定義)和本地(200 多個國家/地區)進行即時分析和高速延遲分析。
    • 模擬最高可加速 300 倍,工具包使用者可以在不到 5 分鐘的時間內運行一天的星座性能。
  • 六角形地面網格:NCAT4 引進了動態六邊形網格,可將國家級精度縮小到城市規模(小區半徑約為9 公里,比之前版本提高40倍)。
  • 增強型 IP 吞吐量計算:系統同時計算閘道和用戶終端視角任意組合的所有用戶/閘道波束的鏈路預算吞吐量分析。
  • 需求驅動的供應:透過可選擇的供應公平標準,NCAT4 可以模擬最適合不斷變化的需求條件的可變梁容量重新配置。
  • 升級的移動工具:該工具包連結到每日更新的商業飛行相關資訊來源*,並包括有關 IFC 的資訊(用於評估飛行中的需求/供應趨勢)連接性。
  • 可下載資料集:模擬產生的大量輸出資料可以下載到表格 CSV 檔案中,以便在 NCAT 平台之外進行進一步處理:
    • 圖表資料、蒙地卡羅樣本、基準指標/分數、帶有時間戳記的星座外殼、地面網格、供需熱圖、評估摘要、飛行路線、視角統計、光束利用率等。

本報告中回答的問題

  • 如何在多個層面(包括覆蓋範圍/容量、波束和衛星)對目前和未來的 NGSO 架構進行基準測試?
  • 每個閘道/用戶波束、衛星和子星座的前向/反向連結容量(頻率、頻寬、IP 吞吐量)是多少?
  • 如何估算可用資本成本(每 Mbps)?商業案例對衛星製造和發射成本的每個要素的反應程度如何?
  • 在什麼條件下,在尚未提供連線服務的地區,衛星通訊星座將比光纖更具競爭力?回程業務案例對資本支出和營運支出有多敏感?
  • 如何根據可調整的行動/固定寬頻服務計畫實際評估頻寬的需求和供應?擁擠的區域在哪裡? 它們會隨著時間的推移而如何變化?
  • 在所有緯度以及每種外殼/外殼組合的 "視線內" 或視距(LoS)衛星的最大、平均和最小數量是多少?
  • 光纖延遲與 LEO 系統和拓撲相比如何?對POP、OISL(光學星間連結)、連結中繼等的使用是否會產生影響?
  • NGSO 系統避免干擾 GEO(GSO)系統的監管豁免角度是什麼?

結論:客戶依靠這個功能豐富的工具箱來支持他們對 LEO 和 MEO 衛星群的分析。

市場參與者的評論

"很棒的工具集!靈活、直觀、易於使用,並且可以進行深入分析。" - Grupo Andesat 執行長 Pablo Rasore。

簡介目錄

The "Non-GEO Constellations Analysis Toolkit" version 4 (NCAT4) combines hard data with analytics models and interactive visualisation tools for factual assessments of LEO and MEO satellite constellations.

The NCAT is an assembly of easy-to-use quantitative models to assess satellite constellations.

The NCAT focuses on the performance of LEO and MEO satellite constellations and includes detailed information about bandwidth supply and demand dynamics, market addressability and business cases. It also compares the competitive standing of the constellations with that of terrestrial networks.

It enables strategists, business and technical professionals to assess the impact of NGSO constellations via configurable user controls.

The newly released "NCAT v4.2" provides enhanced insights and data visualisation capabilities, and is delivered as an online web app.

Changes and new additions

NCAT4 processes millions of data points dynamically to drive unbiased calculations of constellations' performance metrics and capabilities. All tools are configurable though filters, visualisation controls and user inputs.

Features include:

  • Comprehensive database: with enhanced update cycles for users to run fresh simulations effortlessly.
    • Daily updates: the number of in-orbit satellites (Starlink, SES O3B, OneWeb, etc.) and their orbital observations are updated daily and automatically.
    • Quarterly updates: enhancements to the core software and database deployed quarterly.
  • Rigorously coded algorithms: driving factual analytics and visualizations.
  • Point-and-click interactivity: through interactive maps and controls (layers, filters, buttons and settings) users zoom in/out, click to set user-terminal locations and control dynamic calculations and visualizations.
  • Multi-orbit, multi-band analysis: simulations are configurable for a combination of shells from one or multiple systems, driving calculations concurrently for thousands of satellites.
  • Dynamic, animated visualisations: users visualise propagating conditions in real time including satellites position, footprint, visible satellites, antenna look angles, link latency variations, supply and demand heatmaps, etc.
  • Space-time controls: NCAT4 allows real-time and accelerated time-lapse analysis globally, regionally (user-defined) or locally for over 200 countries and territories.
    • Simulations can be accelerated up to 300 times, allowing toolkit users to run an entire day of constellation performance in less than 5 minutes.
  • Hexagonal ground grid: NCAT4 introduced a dynamic hex-grid with country-level precision configurable down to city-size resolution (~9 km cell radius, a 40X improvement in precision over previous versions).
  • Boosted IP throughput computations: The system computes link-budget throughput analysis concurrently on all user and gateway beams for combinations of gateway and user-terminal look angles.
  • Demand-driven supply: via selectable supply fairness criteria, NCAT4 simulates reconfigurations of steerable beam capacity to best meet changing demand conditions.
  • Upgraded mobility tool: the toolkit is linked to daily information sources* of commercial flights for the assessment of in-flight connectivity (IFC) supply/demand dynamics (tens of thousands of flight routes, airlines and airports).
  • Downloadable datasets: simulations produce vast amounts of output data, downloadable in tabular CSV format for further processing outside the NCAT platform:
    • Charts data, Monte Carlo samples, benchmark metrics /scores, timestamped constellation shells, terrestrial grids, supply & demand heatmaps, assessment summaries, flight routes, look angle stats, beam utilization, etc.

Questions answered:

  • How do current and future NGSO architectures benchmark at multiple layers including coverage, capacity, beams and satellites?
  • What is the forward and return link capacity (spectrum, bandwidth and IP throughput) per gateway/user beam, satellite and sub-constellation?
  • How can the capital cost per usable Mbps be inferred? What is the business-case sensitivity to satellite manufacture and launch cost elements?
  • Under what conditions can satcom constellations become more competitive than fiber optics to target underserved communities? How sensitive is the backhaul business case to capex and opex?
  • How to assess bandwidth supply and demand factually, based on configurable mobility and fixed broadband service plans? Where are the congestion areas and how do they shift over time?
  • What is the maximum, average and minimum number of satellites "in view" or line of sight (LoS) across all latitudes, per shell and combination of shells?
  • How does fiber latency benchmark against LEO systems and topologies, depending on POPs, use of optical inter-satellite links (OISL) and link relays?
  • What are the regulatory exclusion angles for NGSO systems to avoid interfering with GEO (GSO) systems?

Bottom line: Clients rely on a feature-rich toolbox to drive analysis of LEO and MEO satellite constellations.

Market commentary:

"The go-to compendium and toolkit for NGSO constellations." - Konrad Nieradka, System and Service Architecht, Rivada Space Networks.

"Very impressive piece of work, and incredibly useful." - Nihar Shah, Vice President, Strategy and Market Intelligence SES.

"Excellent toolset! Flexible, visual, easy-to-use and with in-depth analysis." - Pablo Rasore, CEO, Grupo Andesat.