人工智慧/機器學習(AI/ML)和支援技術:地球觀測服務提供者的策略
市場調查報告書
商品編碼
1527365

人工智慧/機器學習(AI/ML)和支援技術:地球觀測服務提供者的策略

AI/ML and Enabling Technologies: Strategies for Earth Observation Service Providers

出版日期: | 出版商: Analysys Mason | 英文 14 Slides | 商品交期: 最快1-2個工作天內

價格
簡介目錄

"多模式衛星資料的複雜性及其提供的見解推動EO服務提供者投資人工智慧和機器學習解決方案的需求。"

目前人工智慧(AI)在地球觀測(EO)的應用僅限於簡單的自動化,並沒有充分利用人工智慧的自學習能力。此外,人工智慧在下游分析應用中並未充分利用。

本報告建議EO服務供應商採用人工智慧的策略,以及如何將其與基礎模型等新技術結合使用,為最終用戶提供量身定制的解決方案,將考察如何將人工智慧與基礎模型等新技術結合起來。

本報告回答的問題:

  • 目前人工智慧(AI)在地球觀測(EO)中的採用程度如何?
  • 基礎模型發揮什麼作用?
  • 生成式人工智慧(GenAI)如何協助建立客製化解決方案並為下游分析公司實現價值差異化?
  • 每個利害關係人應該如何應對人工智慧的日益普及並從這一新的市場趨勢中受益?
  • 什麼樣的合作關係可以幫助這些利害關係人加強和提高他們的 AI/ML 能力?
簡介目錄

"The complexity of multi-modal satellite data, and the insights we can derive from it, make it increasingly necessary for EO service providers to invest in AI and ML solutions."

The current adoption of AI in Earth observation (EO) is limited to simple automation and does not fully take advantage of the self-learning capabilities of artificial intelligence (AI). Furthermore, AI is underused in downstream analytics applications.

This report provides strategic guidance for EO service providers on adopting AI and how AI can be used together with emerging technologies such as foundation models to offer tailored solutions for end users.

Questions answered in this report:

  • What is the current level of adoption of AI in EO?
  • What role do foundation models play?
  • How can generative AI (GenAI) help to build tailored solutions and enable value differentiation for downstream analytics players?
  • What should different stakeholder groups do to address the increasing adoption of AI and benefit from this emerging market trend?
  • Which partnerships will enable these stakeholders to enhance and improve their AI/ML capabilities?