市場調查報告書
商品編碼
1297001
飛機 LRU 的全球市場Global Aircraft LRU Market |
LRU(線路可更換單元)是先進的組件,可用作飛行管理、平視顯示器和其他飛機系統操作的子系統接口。 這些設備採用微控制器和FPGA(現場可編程門陣列)來實現高度可靠的信息顯示和控制功能。 開放式架構設計的一個突破是“數字主幹網”的預期使用。 通過將航空系統的數字主幹與飛機的任務系統解耦,任務系統的未來變化或更新不太可能對航空網絡產生不利影響。 希望這一戰略能夠在未來幾年簡化並加速直升機技術更新。 它不僅最大限度地減少了重新認證整個飛機總線架構的需要,而且還消除了每次添加新技術或功能時進行回歸測試的需要。
FACE(未來機載能力環境TM)方法是政府和行業製定的軟件標準。 FACE 方法結合了技術和業務實踐,創建了一個標準的共享操作環境,其功能可以在航空電子系統之間轉移。
FACE技術標準提供了架構部分以及集成這些部分的重要接口的規範。 這使得能夠在不同的硬件計算環境中重用基於功能的軟件組件。 它還可以在系統生命週期內引入新的和改進的功能以及快速替換現有軟件。 FACE 方法與永久系統和未來系統相關,包括新系統設計、系統級升級和組件升級。
飛機 LRU 市場是由對開放架構系統不斷增長的需求推動的。 世界各地的軍隊越來越關注以網絡為中心的戰爭並轉向互操作性。 這些市場趨勢將推動LRU市場的增長。
LRU的輕量化、小型化將是影響市場增長的主要市場趨勢。 遵守開放架構和即將推出的標準,例如 MOSA(模塊化開放系統架構)也是一個關鍵的市場趨勢。
國防支出的增加推動了新的採購活動和將現有平台更新為新功能的市場。 國防支出的增加推動了運輸機、戰鬥機、直升機和無人駕駛系統等新型飛機的採購。 採購也將受到歐洲和亞太地區政治氣候的推動。
未來垂直升力 (FVL) 計劃是美國陸軍最重要和最具突破性的舉措之一,它是下一代直升機的開放式架構設計概念,它將接替 OH58 Kiowa Warrior、AH64 Apache 和 UH60 Black Hawk。通過了。 這些舉措是 MOSA 概念真正的分水嶺時刻。 陸軍將 MOSA 視為一種為飛機和任務系統電子設備建立客觀架構的方法,使其能夠更好地控制系統更新過程。
此外,MOSA 將幫助政府實現盡可能在兩種獲獎飛機設計之間建立共性的目標。 這種共性使得陸軍不再需要僅僅依賴主承包商來進行系統現代化。 相反,子系統架構的描述足夠準確,使政府能夠通過第三方提供商滿足更新要求,從而促進競爭、互操作性和成本節約。 展望未來,MOSA 方法將為陸軍提供更大的靈活性,縮短部署時間,並實現長期成本節約。
AeroVironment 已從阿拉巴馬州紅石兵工廠陸軍合同司令部獲得價值 1100 萬美元的合同。 無人機系統 RQ-20 Puma Long-Endurance (LE) 適用於偵察任務,與 AeroVironment 的遠程跟蹤天線相結合,手動操作的 Puma LE 的陸地、海上和空中工作範圍為 37.3 英裡。 對於白天和夜間操作,操作員可以在 Mantis i45 和可選的 Mantis i45 N 之間切換。 其可互操作、即插即用的 LRU 組件可與其他 Puma 全環境 (AE) 飛機互換。
Genesys Aerosystems Inc. 被選中更新 HAL 的 HINDUSTAN-228。 HAL 與 S-TEC 4000R 自動駕駛系統的合作為 HINDUSTAN-228 平台帶來了最先進的數字自動駕駛系統,並為 HINDUSTAN-228 飛機添加了 VNAV 功能和增強安全性等附加功能。 這項工作還為該平台提供了近 20 年的擴展支持。 S-TEC 4000R 是一款 3 軸、基於姿態的遠程安裝飛行控制系統,專為 4 級第 23 部分飛機而開發。 S-TEC 4000R 集成了獨立的飛行引導計算機 (FGC) 和模式控制面板 (MCP),為空間有限的飛機中航空電子設備 LRU 的放置提供了最佳的靈活性。 MCP 由用於控制飛行員選擇的自動駕駛模式的按鈕組成。
LRUs are advanced assemblies that serve as sub-system interfaces for flight management, heads-down displays, and other aircraft system operations. These devices employ microcontrollers or Field Programmable Gate Arrays (FPGA) to produce high-reliability information display and control features. A leap forward for open architecture design is the anticipated usage of "digital backbones". Separating the aviation system's digital backbone from the aircraft's mission systems reduces the potential that any future changes or upgrades to the mission systems will have an undesirable influence on the aviation network. This strategy promises to simplify and accelerate technology renewal for these helicopters for years to come, minimizing the need to recertify the entire aircraft bus architecture as well as the necessity for regression testing anytime new technologies or capabilities are added.
The Future Airborne Capability EnvironmentTM (FACE) Approach is a software standard established by the government and industry. The FACE Approach combines technological and business practices to create a standard shared operating environment with transferable capabilities across avionics systems.
The FACE Technical Standard provides the specifications for architectural segments and essential interfaces that bring the segments together. This allows capability-based software components to be reused across diverse hardware computing environments. It also allows for the rapid replacement of existing software as well as the introduction of new and improved capabilities during the system's lifecycle. The FACE Approach is relevant to both lasting systems and future systems, including new system designs, system-level upgrades, and component upgrades.
Aircraft LRU market will be driven by increasing demand for open architecture systems. Armed forces around the world are moving towards interoperability with increasing emphasis on network centric warfare. These market trends will drive the growth of the LRU market.
Lightweight and small form factor LRU will be the main market trend that will influence the growth of the market. Compliance with open architecture and upcoming standards such as Modular Open Systems Architecture (MOSA) will also be one of the key market trend.
Increasing defense spending will drive the market for new procurement activities and upgrades to existing platforms with newer capabilities. The increase in defense spending will encourage procurement of new aircrafts such as transport aircrafts, fighter aircrafts, helicopters and unmanned systems. Procurement will also be driven by prevailing geo political conditions in Europe and the Asia Pacific.
The Future Vertical Lift (FVL) program, one of the United States Army's most critical and game-changing efforts, is fully adopting the open architecture design philosophy for the next-generation helicopters that will replace the OH58 Kiowa Warrior, AH64 Apache, and UH60 Black Hawk rotorcraft. These initiatives are a true watershed moment for the Modular Open Systems Architecture (MOSA) concept. The Army sees MOSA as the way to establishing an objective architecture for both aircraft and mission systems electronics that will give more control over the system-upgrade process.
Furthermore, MOSA will assist the government in achieving its goal of establishing commonality between the two winning aircraft designs whenever practicable. Because of this commonality, the Army will no longer have to rely solely on the prime contractor to modernize a system. Instead, the subsystem architecture will be described with enough precision that the government will be able to meet update requirements through third-party providers, fostering competition, interoperability, and cost savings. Going ahead, the MOSA method will give the Army with greater flexibility, cut time to deployment, and deliver long-term savings.
AeroVironment has been awarded a $11 million contract by the Army Contracting Command at Redstone Arsenal in Alabama. Unmanned aircraft system RQ-20 Puma Long-Endurance (LE) for surveillance missions. When combined with the AeroVironment long-range tracking antenna, the hand-launched Puma LE has an operational range of 37.3 miles over land and sea. For day and night operations, operators can switch between the Mantis i45 and the optional Mantis i45 N. Its interoperable, plug-and-play line-replaceable unit (LRU) components can be exchanged with other Puma all-environment (AE) aircraft.
Genesys Aerosystems Inc. Selected for HAL HINDUSTAN-228 Upgrade. HAL's work with the S-TEC 4000R autopilot system will bring the latest digital autopilot system to the HINDUSTAN-228 platform, as well as additional features such as VNAV capability and better safety to the HINDUSTAN-228 aircraft. The initiative will also provide almost 20 years of extended platform support. The S-TEC 4000R is a three-axis, attitude-based, remote-mounted flight control system developed for Class 4, Part 23 aircraft. The S-TEC 4000R incorporates a separate flight guidance computer (FGC) and mode control panel (MCP) for optimum flexibility in avionics LRU placement within aircraft with limited space. The MCP is made of buttons that allow the pilot to control the autopilot mode that has been selected.