誘導多能幹細胞(iPS 細胞)的全球市場:市場規模、趨勢和預測(2024 年)
市場調查報告書
商品編碼
1497893

誘導多能幹細胞(iPS 細胞)的全球市場:市場規模、趨勢和預測(2024 年)

Global Induced Pluripotent Stem Cell (iPSC) Industry Report - Market Size, Trends, and Forecasts, 2024

出版日期: | 出版商: BioInformant | 英文 389 Pages | 訂單完成後即時交付

價格
簡介目錄

自2006年發現誘導多能幹細胞(iPSC)技術以來,幹細胞生物學和再生醫學取得了巨大進展。新的病理機制已經被識別和解釋,透過 iPS 細胞篩選鑑定的新藥物已經開發出來,並且首次使用人類 iPSC 衍生細胞的臨床試驗已經開始。 iPS 細胞可用於探索疾病發生和進展的原因、開發和測試新藥物和治療方法以及治療以前無法治癒的疾病。

目前,誘導性多能幹細胞(iPSC)商業化的方法包括:

  • 細胞療法:iPS 細胞正被考慮應用於多種細胞療法,以達到從損傷或疾病中恢復的目的。
  • 疾病模型:透過從患病患者體內產生 iPS 細胞並將其分化為疾病特異性細胞,iPS 細胞可以 "在培養皿中" 有效地創建疾病模型。
  • 藥物發現/開發:iPS細胞為化合物鑑定、標靶驗證、化合物篩選和工具發現提供生理相關細胞,它有可能徹底改變世界。
  • 個人化醫療:CRISPR 等技術使我們能夠在許多細胞類型中精確、直接地創建基因敲除和基因敲入(包括單鹼基變化)。 iPS 細胞和基因組編輯技術的結合正在為個人化醫療帶來新的維度。
  • 毒理學測試:iPS細胞可用於毒理學篩檢。這涉及使用 iPS 細胞或其衍生物(組織特異性細胞)評估活細胞中化合物和藥物的安全性。
  • 組織工程:iPS 細胞可以接種到由生物相容性材料製成的支架中。這些支架可以模仿目標組織的結構和特性,並為細胞增殖和分化提供支持環境。
  • 類器官的生成:iPS 細胞可以被誘導自組裝成稱為類器官的三維結構,模仿器官的結構和功能。類器官可用於研究器官發育、模型疾病、測試藥物等。
  • 基因編輯:可以使用 CRISPR-Cas9 等技術對 iPS 細胞進行基因改造,以糾正引起疾病的突變或引入特定的基因變化。編輯後的 iPS 細胞可以分化成用於移植或疾病建模所需的細胞類型。
  • 研究工具:iPS 細胞和 iPSC 衍生細胞廣泛用於從基礎到應用的各種研究應用。
  • 幹細胞庫:iPS 細胞儲存庫可讓研究人員使用健康和患病捐贈者產生的 iPSC 衍生細胞類型來研究不同的疾病狀態,為您提供機會。
  • 培養肉生產:iPS細胞在清潔肉類生產中用作生產培養肉的細胞基礎。
  • 3D 生物列印:iPS 細胞可以分化為所需的細胞類型,例如皮膚、心臟或肝細胞,然後可以將其納入生物墨水中。
  • 野生動物保護和防止滅絕計畫:iPS細胞用於野生動物保護和防止滅絕計畫。例如,Colossal Biosciences 正在使用 iPS 細胞技術來防止猛□象的滅絕。

iPSC 市場趨勢

自 2006 年發現 iPSC 以來,僅花了七年時間,第一個 iPSC 衍生細胞產品就於 2013 年移植到人類患者體內。從那時起,iPSC 衍生細胞被用於世界各地數量迅速增加的臨床前研究、研究者發起的研究和臨床試驗。

iPSC 的發現不僅徹底改變了藥物發現、毒性測試和培養皿內疾病建模領域,而且對細胞和基因治療領域產生了強大影響。 iPSC 在體外生長並分化為特殊細胞的能力使其成為臨床治療細胞替代療法和疾病建模的各種細胞類型的理想來源。

當然,2013 年是具有里程碑意義的一年。這是因為位於神戶的 RIKEN 中心已經開始了第一個將 iPS 細胞移植到人體的細胞療法。該研究由 Masayo Takahashi 博士領導,調查了 iPSC 衍生細胞片在黃斑部病變患者中的安全性。 Cynata Therapeutics 於 2016 年獲得批准,開始用於治療 GvHD 的同種異體 iPSC 衍生細胞產品 (CYP-001) 的首次正式臨床試驗,這是另一項世界首創。 CYP-001 是 iPSC 衍生的 MSC 產物。在這項歷史性的臨床試驗中,CYP-001達到了臨床終點,並證明了治療類固醇抗藥性急性 GvHD 的良好安全性和有效性數據。

iPSC 衍生的 MSC 正在治療類固醇抗性急性移植物抗宿主疾病 (GvHD) 中進行測試,iPSC 衍生的多巴胺能祖細胞正在評估帕金森氏症的治療效果。 iPSC 來源的視網膜色素上皮細胞在治療老年黃斑部病變 (AMD) 方面顯示出良好的效果。此外,iPSC 衍生的胰島素分泌 β 細胞正在測試作為第 1 型糖尿病的治療方法。

iPSC 有潛力應用於同種異體和自體移植,但使用 iPSC 衍生製劑的同種異體療法的發展速度超過了自體療法的發展速度。幾種利用來自健康捐贈者的 iPSC 衍生細胞的異體療法已被用於治療糖尿病、帕金森氏症和 AMD,這些療法正在迅速進入早期臨床試驗。

開發該市場的競爭對手也將 iPS 細胞衍生產品商業化,用於藥物發現、疾病建模和毒性測試。在更廣泛的 iPSC 領域,FUJIFILM CDI (FCDI) 是最大、最具主導地位的參與者之一。 Cellular Dynamics International (CDI) 由威斯康辛大學麥迪遜分校的 James Thomson 博士於 2004 年創立,並於 2007 年首次從人類體細胞建立了 iPSC 系。這項壯舉是在日本山中伸彌博士的實驗室裡同時完成的。FUJIFILM於 2015 年 4 月以 3.07 億美元收購了 CDI。如今,合併後的公司 (FCDI) 是全球最大的源自 iPS 細胞的人體細胞製造商,其用於研究、藥物發現和再生醫學應用。

ReproCELL 成立於 2009 年,是東京大學和京都大學的創投公司,也是 iPS 細胞領域的專家。該公司推出了ReproCardio產品,這是一種人類iPSC衍生的心肌細胞,使其成為世界上第一個商業化的iPSC產品。在歐洲市場,Evotec、Ncardia 和 Axol Bioscience 是主要競爭對手。 Evotec 總部位於德國漢堡,是一家藥物發現聯盟和開發合作夥伴公司。我們正在開發一個 iPSC 平台,目標是將基於 iPSC 的藥物發現篩選與通量、重現性和穩健性相關性進行工業化。如今,Evotec 的基礎設施是世界上最大、最先進的 iPSC 平台之一。

Ncardia 成立於 2017 年,由 Axiogenesis 和 Pluriomics 合併而成。其前身 Axiogenesis 成立於 2011 年,最初專注於小鼠胚胎幹細胞衍生的細胞和檢測。山中教授的 iPSC 技術面世後,Axiogenesis 於 2010 年成為第一家獲得許可的歐洲公司。如今,合併後的公司 (Ncardia) 是人類 iPSC 心臟和神經應用領域的世界權威。 Axol Bioscience 成立於 2012 年,是一家規模雖小但頗具知名度的競爭對手,專注於 iPSC 衍生產品。我們總部位於英國劍橋,專注於人類細胞培養,並提供 iPSC 衍生細胞和 iPSC 特異性細胞培養產品。

當然,世界上最大的研究和供應公司也在將各種 iPSC 衍生產品和服務商業化。例如,Lonza、BD Biosciences、Thermo Fisher Scientific、Merck、Takara Bio 以及無數其他公司。目前,至少有 90 家競爭公司提供各種 iPSC 產品、服務、技術和療法。

本報告考察了全球 iPS 細胞市場的主要參與者,包括他們的核心技術、策略夥伴關係和正在開發的產品。它還涵蓋了 iPSC 研究、生物醫學應用、製造技術、專利和資金的現狀,以及與全球 iPSC 衍生細胞療法開發相關的已知試驗。重要的是,本書提供了全球領先市場參與者的概況,並依應用、技術、細胞類型和地區(北美、歐洲、亞太地區和世界其他地區)全面介紹了 iPSC。它還顯示了 2030 年之前的市場總規模和預測成長率。

目錄

第一章研究概述

第 2 章簡介

第三章 iPS細胞(iPSC)產業現況

  • 利用 iPS 細胞進行自體細胞治療的進展
    • 正在開發的自體 iPSC 衍生細胞療法範例
    • 自體 iPSC 衍生細胞產品的生產計劃
    • iPS 細胞生產成本
    • iPS 細胞生產的自動化
  • 使用同種異體 iPS 細胞進行細胞治療
  • 基於 iPS 細胞的分析在整個幹細胞產業中的佔有率
  • iPS細胞公司的主要關注領域
  • 市售 iPSC 衍生細胞的類型
  • iPSC 衍生細胞類型在毒性測試分析中的相對用途
  • 臨床試驗中使用的 iPSC 衍生細胞類型
  • 目前可用的 iPS 細胞技術
    • iPS細胞相關技術概述

第四章誘導多能幹細胞(iPS細胞)的歷史

  • 2006 年:從小鼠纖維母細胞產生第一批 iPS 細胞
  • 2007 年:第一代人類 iPS 細胞
  • 2010 年:CiRA 成立
  • 2012 年:首次使用 iPS 細胞進行高通量篩選
  • 2013年:首個iPS細胞臨床試驗在日本獲得批准
  • 2014 年:首次針對 AMD 進行 iPSC-RPE 細胞片移植
  • 2014 年:EBiSC 成立
  • 2017 年首次使用同種異體 iPS 細胞治療 AMD 的臨床試驗
  • 2018:使用同種異體 iPS 細胞治療巴金森氏症的臨床試驗
  • 2018年:建立商業iPS細胞工廠SMaRT
  • 2019 年:日本首家 iPS 細胞治療中心
  • 2019 年:NIH 贊助的美國首次使用 iPS 細胞的臨床試驗
  • 2020 年:Cynata Therapeutics 進行全球規模最大的 3 期試驗
  • 2021 年:iPS 細胞製造工具與臨床試驗專業知識
  • 2022 年:利用周邊血球內部生產 iPS 細胞

第 5 章 iPS 細胞研究出版品

  • iPS 細胞出版物數量迅速增加
    • 使用 iPS 細胞進行病理生理學研究的 PubMed 出版物
    • 重編程的 PubMed 文章
    • 有關 iPS 細胞分化的 PubMed 文章
    • 關於 iPS 細胞在藥物發現中的應用的 PubMed 文章
    • 關於基於 iPS 細胞的細胞療法的 PubMed 文章

第六章 iPS 細胞:專利狀況分析

  • iPS 細胞專利申請數量:依司法管轄區劃分
  • iPS細胞專利申請人
  • iPS細胞專利發明人
  • iPS 細胞專利擁有者
  • iPS 細胞專利的法律地位

第 7 章 iPS 細胞:臨床試驗現況

  • iPS細胞臨床試驗數量
  • iPS細胞臨床試驗招募情形
  • iPS細胞臨床試驗與研究的設計
  • 治療性與非治療性 iPS 細胞臨床試驗
    • 非治療性臨床研究:依應用分類
    • 治療研究的目標疾病
    • 使用 iPS 細胞進行治療研究的範例
  • 基於 iPS 細胞的檢驗:依研究階段劃分
  • iPS 細胞臨床試驗:依資助者類型
  • iPS 細胞的臨床試驗:地理分佈
  • 有前景的 iPS 細胞候選產品
    • CYP-001□CYP-004□CYP-006:Cynata Therapeutics
    • BioVAT-HF:Repairon GmbH
    • HS-001:Heartseed
    • CNTY-101:Century Therapeutics
    • FT-576□FT-819:Fate Therapeutics
    • RPE:National Eye Institute
    • QN-019a:Qihan Biotech
    • iPSC-CL:Heartworks, Inc.
  • 擁有臨床前階段 iPS 細胞資產的公司
    • Aspen Neuroscience
    • Ryne Biotech
    • Bluerock Therapeutics
    • Vita Therapeutics
    • Hopstem Biotechnology
    • Res Nova Bio, Inc.
    • Cytovia Therapeutics
    • Hebecell Corporation
    • Sana Biotechnology
    • SCG Cell Therapy Pte
    • Cytomed
    • Shoreline Biosciences
    • Neukio Biotherapeutics
    • Exacis Biotherapeutics
    • CellOrigin Biotech

第八章 iPS細胞領域併購、業務合作及融資活動

  • 併購 (M&A) 部門
    • Century Therapeutics□Clade Therapeutics
    • Evotech□Rigenerand
    • Fujifilm Corporation□Atara Biotherapeutics
    • Catalent□RheinCell Therapeutics
    • Axol Biosciences□Censo Biotechnologies
    • Bayer AG□Bluerock Therapeutics
    • Pluriomix□Axiogenesis
  • iPS細胞領域的業務聯盟/業務合作與授權協議
    • Shinobi Therapeutics□Panasonic
    • SCG Cell Therapy and A*STAR
    • Charles River Laboratories□Pluristyx, Inc.
    • Pluristyx, Inc.□National Resilience, Inc.
    • University of Texas□GeneCure
    • Heartseed, Inc.□Undisclosed Biotech
    • Bluerock Therapeutics□Bit.bio
    • Applied Stem Cell, Inc.□CIRM
    • Resolution Therapeutics□OmniaBio, Inc.
    • REPROCELL, Inc.□CIRM
    • REPROCELL, Inc.□BioBridge Global
    • Elevate Bio□CIRM
    • Evotec□Sernova
    • Evotec□Almiral
    • Quell Therapeutics□Cellistic
    • MDimmune□YiPSCELL
    • Edigene□Neukio Biotherapeutics
    • Matricelf□Ramot
    • Evotec□Boehringer Ingelheim
    • Pluristyx, Pancella□Implant Therapeutics
    • Century Therapeutics□Bristol Myers Squibb
    • Fujifilm Cellular Dynamics□Pheno Vista Biosciences
    • Metrion Biosciences□Bioqube Ventures
    • Cytovia Therapeutics□Cellectis
    • Exacis Biotherapeutics□CCRM
    • Cynata Therapeutics□Fujifilm Corporation
    • Bone Therapeutics□Implant Therapeutics
    • REPROCELL□TEXCELL
    • Jacobio□Herbecell
    • NeuCyte□KIF1A.ORG
    • Kite□Shoreline Biosciences
    • Neuropath Therapeutics□Hopstem Biotechnology
    • Allele Biotech□Cellatoz
    • Bluerock Therapeutics, Fujifilm Cellular Dynamics□Opsis Therapeutics
    • Newcells□Takeda
    • Biocentriq□Kytopen
    • Fujifilm Cellular Dynamics□Sana Biotechnology
    • Evotec□Medical Center Hamburg-Eppdorf (UKE)
    • NeuCyte□Seaver Autism Center for Research and Treatment
    • Cytovia Therapeutics□National Cancer Institute
    • Mogrify□MRC Laboratory of Molecular Biology
  • iPS細胞領域的創投
    • Asgard Therapeutics
    • Kenai Therapeutics
    • Pluristyx
    • Fujifilm Cellular Dynamics
    • Mogrify Ltd.
    • Heartseed, Inc.
    • Elevate Bio
    • Aspen Neurosciences
    • Axol Biosciences
    • Thyas, Co. Ltd
    • Synthego
    • Cellino Biotech, Inc
    • Curi Bio
    • Ncardia
    • Evotec SE
    • bit.bio
    • Clade Therapeutics
    • Shoreline Biosciences
    • Kytopen
    • Cytovia Therapeutics & CytoLynx
    • TreeFrog Therapeutics
    • HebeCell Corporation
    • Neukio Biotherapeutics
    • Stemson Therapeutics
    • Vita Therapeutics
    • Century Therapeutics
    • Heartseed
    • Mogrify
    • Metrion Biosciences
    • Elevate Bio
    • Vita Therapeutics

第 9 章誘導多能幹細胞 (iPSC) 的生成

  • OSKM 雞尾酒
    • Oct4(八聚體結合轉錄因子 4)
    • Sox(SRY-box 轉錄)因子 2
    • Klf4(Kruppel 樣因子 4)
    • C-Myc
  • 多能性相關轉錄因子及其功能
    • 不同細胞來源的不同因素組合
  • 重編程因子的傳遞
    • 系統集成
    • 非整合交付系統
    • 交付方式比較
  • 用於 iPS 細胞生成的基因組編輯技術
    • CRISPR/Cas9
  • 可用的 iPS 細胞系及其用途

第 10 章人類 iPS 細胞庫

  • 儲存 iPS 細胞和 iPS 細胞系的主要生物庫
    • RIKEN
    • WiCell
    • Fujifilm Cellular Dynamics, Inc.
    • Sampled
    • Coriell Institute for Medical Research
    • European Bank for Induced Pluripotent Stem Cells (EBiSC)
  • iPS 細胞庫的細胞來源
  • iPS細胞庫中的重編程方法
  • iPS 細胞庫的所有權和投資

第 11 章 iPS 細胞的生物醫學利用

  • iPS 細胞在基礎研究的應用
    • 瞭解細胞命運控制
    • 瞭解細胞再生
    • 瞭解多能性
    • 研究組織與器官發育
    • 利用 iPS 細胞創造人類配子
    • 為研究人員提供 iPS 細胞相關服務的提供者
  • iPS 細胞在藥物發現中的利用
    • 利用 iPS 細胞檢驗治療心血管疾病的藥物
    • 使用 iPS 細胞系測試神經系統疾病的治療藥物
    • 使用 iPS 細胞系測試罕見疾病藥物
  • iPS 細胞在毒理學研究的應用
    • 使用 iPS 細胞進行毒性測試的藥物範例
    • 用於毒性測試研究的 iPSC 衍生細胞類型:相對利用率
  • 疾病模型iPS 細胞的利用
    • 利用 iPSC 衍生細胞建模心血管疾病
    • 使用 iPSC 衍生的肝細胞模擬肝臟疾病
    • 神經退化性疾病模型中的 iPS 細胞
    • iPSC 衍生的類器官用於疾病建模
    • 癌症來源的 iPS 細胞
  • iPS 細胞在細胞療法中的應用
    • 僅專注於 iPS 細胞療法的公司
  • iPS 細胞的其他新用途
    • iPS 細胞在組織工程上的應用
    • 源自牲畜的 iPS 細胞
    • 用於保護瀕危動物物種的 iPS 細胞系
    • 培養肉中的 iPS 細胞

第十二章市場分析

  • 全球 iPS 細胞市場:依地區劃分
  • 全球 iPS 細胞市場:依技術分類
  • 全球 iPS 細胞市場:依生物醫學應用劃分
  • 全球 iPS 細胞市場:依衍生細胞類型劃分
  • 市場驅動因素
    • 目前影響 iPS 細胞市場的因素
  • 市場限制因素
    • 經濟課題
    • 基因組不穩定
    • 免疫原性
    • 生物樣本庫

第十三章公司簡介

  • AcceGen
    • ASC-CRISPR iPSs基因編輯技術服務
  • Acellta, Ltd.
    • 技術
  • AddGene, Inc.
    • 病毒質粒
  • Allele Biotechnology, Inc.
    • 技術
  • ALSTEM, Inc.
    • 細胞株生成工具
    • 細胞永生化試劑盒
    • iPS 細胞試劑盒
    • 細胞系
    • 基因編輯
    • iPS細胞系
    • 病毒打包工具
  • Altos Labs
    • altos的科學
  • AMS Biotechnology, Ltd. (AMSBIO)
    • 細胞株產品
  • Applied StemCell (ASC)
    • 基於 iPS 細胞的臨床前 CRO 服務
    • GMP 級 iPS 細胞服務與產品
    • GMP TARGATT iPS 細胞-iNK 平台
    • CRISPR iPS細胞基因組編輯服務
    • iPS細胞生成服務
    • iPS細胞分化服務
    • 幹細胞產品
  • Asgard Therapeutics
  • Aspen Neurosciences, Inc.
    • Aspen 的臨床產品線
  • Astellas Pharma, Inc.
    • 同種異體細胞療法
    • 通用供體細胞技術
    • Astellas強大的產品線
  • Axol Biosciences 有限公司
    • Axol 的基因工程疾病系列
    • 客製化人類 iPS 細胞和 iPS 細胞服務
    • Axol 產品
  • BioCentriq
  • 生物中心
    • LEAP先進治療平台
  • Bit.bio
    • 治療藥物
    • Opti-Ox 重編程技術
  • BlueRock Therapeutics LP
    • Bluerock 細胞療法
    • 細胞+基因平台
    • BlueRock 的細胞治療計劃
  • BrainXell
    • 產品
    • 客製化服務項目
    • 內部偵測服務
  • Cartherics Pty, Ltd.
    • 同種異體 CAR 免疫細胞
  • Catalent Biologics
    • OneBio 整合套件
    • 醫藥原料開發
    • 藥物開發
    • 分析服務
    • Catalent 的 iPS 細胞服務
  • Cellistic
    • 脈衝平台
    • Echo 平台
    • 使用 iPS 細胞的同種異體移植方法
  • CellOrigin Biotech (Hangzhou), Co., Ltd.
  • Celogics, Inc.
    • 心肌細胞
  • Cellular Engineering Technologies (CET)
    • iPS細胞重編程法
    • 使用 CET 幹細胞
    • 產品
  • Cellusion, Inc.
    • 孤兒藥認定
    • 球狀角膜病
  • Century Therapeutics, Inc.
    • 細胞治療平台
    • 世紀的產品線
  • Citius Pharmaceuticals, Inc.
    • 幹細胞平台
  • Creative Bioarray
    • 多能幹細胞
    • iPSC 衍生細胞
    • 服務
  • Curi Bio
    • 疾病模型開發服務
  • Cynata Therapeutics, Ltd.
    • Cymerus 平台
    • GVHD 的臨床進展
    • 骨關節炎
    • 急性呼吸窘迫症候群
    • 糖尿病傷口
  • Cytovia Therapeutics
    • iPSC 衍生的 NK 細胞和 CAR-NK 細胞
  • DefiniGEN
    • DefiniGEN 平台
    • 效能篩選服務
    • 毒性篩檢
    • 疾病模型
    • iPS 細胞產品
  • Editas Medicine
    • SLEEK 基因編輯
    • iPSC 衍生的 NK 細胞
  • Editco Bio., Inc.
    • 敲除 iPS 細胞系
    • 敲入 iPS 細胞系
  • ElevateBio
    • iPS 細胞技術
  • Elixirgen Scientific, Inc.
    • 技術
    • 服務內容
    • iPS 細胞產品
  • Eterna Therapeutics
    • 基因編輯
    • 基因傳遞
  • Evotec AG
    • iPS 細胞療法
    • 藥物發現服務
    • 治療區域
  • Eyestem
    • Eyecyte-RPE
    • Eyecyte-PRP
    • Aircyte-AEC
  • Fate Therapeutics
    • iPS細胞平台
    • iPS細胞的製造
    • 產品管道
    • Fate Therapeutics 合作
  • FUJIFILM Cellular Dynamics, Inc.
    • 產品
    • FUJIFILM客製化服務
    • iPS細胞疾病模型
    • 安全藥理學/毒理學測試
  • Gameto
    • Fertilo
  • Greenstone Biosciences
  • Heartseed, Inc.
    • HS-001:主導候選產品
    • 技術
  • HebeCell
    • ProtoNK
    • 視網膜感光前驅細胞
    • 奈米蛋白質
  • Helios K.K.
    • 研究活動
  • Hera BioLabs
    • 獨特的 SRG 老鼠
    • Cas-CLOVER基因編輯平台
    • 搭載轉座子系統平台
    • 細胞系開發服務
    • 客製化細胞系工程服務
    • 動物模型的創建
    • 體內調查服務
  • Hopstem Biotechnology
    • 管道
  • Implant Therapeutics, Inc.
    • 服務
  • IN8bio
    • DeltEx 平台
    • iPSC γ δ T 細胞
  • I Peace, Inc.
    • GMP 產品
    • 客製化製造服務
  • IPS HEART
    • IPS HEART 方法
    • ISX-9
    • GIVI-MPC
  • iPS Portal, Inc.
    • 服務
  • iPSirius
    • iPSirius 平台
  • iXCells Biotechnologies
    • iPS 細胞產品
    • 臨床前服務
  • Kenai Therapeutics, Inc.
  • Khloris Biosciences, Inc.
  • Kytopen
    • 產品
  • Laverock Therapeutics
    • GEiGS 和 iPS 細胞
    • Ex Vivo GEiGS 相容細胞療法
  • Lindville Bio, Ltd.
    • 服務
  • Lonza Group, Ltd.
    • iPS 細胞製造的專業知識
    • 核轉染技術
  • Matricelf
    • 脊髓損傷的解決方案
  • Megakaryon Corporation
    • 利用 iPS 細胞生產血小板
    • 從 iPS 細胞發育成巨核細胞
    • 血小板的安全生產
    • 研發管線
  • Metrion Biosciences 有限公司
    • 離子通道高通量篩選
    • 使用人類 iPS 細胞來源的心肌細胞進行臨床 QTc/QRS 預測
  • Mogrify
    • MOGRIFY 平台
    • epiMOGRIFY 平台
  • Ncardia Services B.V.
    • 神經細胞星狀細胞
    • Ncyte內皮細胞
    • Ncyte 神經組合
    • Ncyte 平滑肌細胞
    • Ncyte v 心肌細胞
    • 客製化疾病建模服務
    • 高通量篩選服務
    • 基於 iPS 細胞的功效檢測服務
    • 基於 iPS 細胞的安全性和毒性測試
  • NeuCyte
    • 技術
    • 藥物發現
  • Neukio Biotherapeutics
    • 同種異體免疫治療平台
  • Newcells Biotech
    • 視網膜模型
    • 視網膜類器官
    • 視網膜色素上皮 (RPE)
    • 腎臟近曲小管細胞模型
    • 檢測準備就緒 aProximate
    • 腎絲球毒性與疾病模型
    • 肺氣道模型
    • 疾病建模服務
  • NEXEL, Co., Ltd.
    • 產品
    • Curi Bio Systems
    • 服務
  • Notch Therapeutics
    • 技術
    • 產品開發
  • Orizuru Therapeutics, Inc.
    • iCM 項目
  • Phenocell SAS
    • iPSC 衍生的 RPE 細胞用於治療老年黃斑部病變 (AMD)
    • 痤瘡和皮脂溢出的研發解決方案
    • 皮膚色素沉著調查/測試平台
    • 細胞與試劑盒
  • Pluristyx
    • panCELLa平台
    • RTD iPS 細胞和 GMP 細胞庫
    • 開發服務
    • 自訂基因編輯
    • iPS 細胞 GMP 製造的專業知識
    • 自訂基因編輯
    • 故障安全
    • iACT 隱形細胞
    • 產品
    • 分化細胞
  • ReNeuron
    • 技術平台
  • Repairon GmbH
    • 技術
  • REPROCELL USA, Inc.
    • 服務
    • REPROCELL iPS 細胞產品
  • Res Nova Bio, Inc.
    • 臨床前研究
  • Sartorius CellGenix GmbH
    • 產品
  • Shinobi Therapeutics
  • Shoreline Biosciences
    • iMAC
  • StemSight
    • 技術
  • Stemson Therapeutics
    • 用於毛囊的 iPS 細胞
  • Stemina 生物標記發現
    • 有氧運動快速預測
    • devTOX 快速預測
  • Tempo Bioscience, Inc.
    • Tempo-iAstro
    • Tempo-iBMEC
    • Tempo-iCardio
    • Tempo-iCort
    • Tempo-iDopaNer
    • Tempo-iLSEC
    • Tempo-iKupffer
    • Tempo-iHepStellate
    • Tempo-iHep3D
    • Tempo-iKer
    • Tempo-iKidneyPod
    • Tempo-iMel
    • Tempo-iMG
    • Tempo-iMono
    • Tempo-iMotorNer
    • Tempo-iMSC
    • Tempo-iNStem
    • Tempo-iOligo
    • Tempo-iOsteo
    • Tempo-iPeri
    • Tempo-iPhago
    • Tempo-iRPE
    • Tempo-iSchwann
    • Tempo-iSenso
    • Tempo StemBank
  • 不常見(高級牛排)
    • 使用 iPS 細胞培養豬肉
  • Universal Cells
    • 技術
  • VCCT, Inc.
    • 視網膜色素上皮細胞的再生
  • ViaCyte, Inc.
    • 技術
    • 管道
  • Vita Therapeutics
    • 技術
  • XCell Science
    • 控制線
    • 細胞產物
    • 服務
  • Yashraj Biotechnology, Ltd.
    • iPS 細胞產品
    • 合約調查服務

插圖索引

表索引

簡介目錄

Since the discovery of induced pluripotent stem cell (iPSC) technology in 2006, significant progress has been made in stem cell biology and regenerative medicine. New pathological mechanisms have been identified and explained, new drugs identified by iPSC screens are in the pipeline, and the first clinical trials employing human iPSC-derived cell types have been initiated. iPSCs can be used to explore the causes of disease onset and progression, create and test new drugs and therapies, and treat previously incurable diseases.

Today, methods of commercializing induced pluripotent stem cells (iPSCs) include:

  • Cellular Therapy: iPSCs are being explored in a diverse range of cell therapy applications for the purpose of reversing injury or disease.
  • Disease Modelling: By generating iPSCs from patients with disorders of interest and differentiating them into disease-specific cells, iPSCs can effectively create disease models "in a dish".
  • Drug Development and Discovery: iPSCs have the potential to transform drug discovery by providing physiologically relevant cells for compound identification, target validation, compound screening, and tool discovery.
  • Personalized Medicine: The use of techniques such as CRISPR enable precise, directed creation of knock-outs and knock-ins (including single base changes) in many cell types. Pairing iPSCs with genome editing technologies is adding a new dimension to personalized medicine.
  • Toxicology Testing: iPSCs can be used for toxicology screening, which is the use of iPSCs or their derivatives (tissue-specific cells) to assess the safety of compounds or drugs within living cells.
  • Tissue Engineering: iPSCs can be seeded onto scaffolds made from biocompatible materials. These scaffolds mimic the structure and properties of the target tissue and can provide a supportive environment for cell growth and differentiation.
  • Organoid Production: iPS cells can be coaxed to self-organize into 3D structures called organoids, which mimic the structure and function of organs. Organoids can be used for studying organ development, modeling diseases, and testing drugs.
  • Gene Editing: iPS cells can be genetically modified using techniques like CRISPR-Cas9 to correct disease-causing mutations or introduce specific genetic changes. These edited iPS cells can then be differentiated into the desired cell type for transplantation or disease modeling.
  • Research Tools: iPSCs and iPSC-derived cell types are being widely used within a diverse range of basic and applied research applications.
  • Stem Cell Banking: iPSC repositories provide researchers with the opportunity to investigate a diverse range of conditions using iPSC-derived cell types produced from both healthy and diseased donors.
  • Cultured Meat Production: iPSCs are being utilized in clean meaat production by serving as the cellular foundation for the creation of lab-grown meat.
  • 3D Bioprinting: iPSCs can be directed to differentiate into cell types of interest, such as skin, heart, or liver cells, which are then incorporated into bioinks.
  • Wildlife Conservation and De-extinction Projects: iPSCs are being used in wildlife conservation and de-extinction projects. For example, Colossal Biosciences is using iPSC technology in an effort to achieve woolly mammoth de-extinction.

iPSC Market Dynamics

Since the discovery of iPSCs in 2006, it took only seven years for the first iPSC-derived cell product to be transplanted into a human patient in 2013. Since then, iPSC-derived cells have been used within a rapidly growing number of preclinical studies, physician-led studies, and clinical trials worldwide.

The discovery of iPSC has not only favorably transformed the field of drug discovery, toxicity testing and in-a-dish disease modeling, but also powerfully impacted the field of cell and gene therapy. The ability of iPSCs to multiply in vitro and then get differentiated into specialized cells makes iPSCs an ideal source of cells of different types for curative clinical cell replacement therapies and disease modeling.

Of course, 2013 was a landmark year because it saw the first cellular therapy involving the transplant of iPSCs into humans initiated at the RIKEN Center in Kobe, Japan. Led by Dr. Masayo Takahashi, it investigated the safety of iPSC-derived cell sheets in patients with macular degeneration. In another world first, Cynata Therapeutics received approval in 2016 to launch the first formal clinical trial of an allogeneic iPSC-derived cell product (CYP-001) for the treatment of GvHD. CYP-001 is an iPSC-derived MSC product. In this historic trial, CYP-001 met its clinical endpoints and produced positive safety and efficacy data for the treatment of steroid-resistant acute GvHD.

Today, at least 155 ongoing clinical trials are using iPSC-derived specialized cells to address various indications. iPSC-derived MSCs are being tested in the treatment of steroid-resistant acute graft versus host disease (GvHD). iPSC-derived dopaminergic progenitors are being evaluated in the treatment of Parkinson's disease. iNK cell-based cancer immunotherapy is being studied in the treatment of metastatic solid tumors. iPSC-derived retinal pigment epithelial cells have shown positive results in the treatment of age-related macular degeneration (AMD). Furthermore, iPSC derived insulin secreting beta cells are being tested for the treatment of Type 1 diabetes.

Although iPSCs have the potential to be used in both allogeneic and autologous applications, the development of allogeneic therapies using iPSC-derived products is outpacing the development of autologous therapies. Several allogeneic therapies utilizing iPSC-derived cells derived from healthy donors are being used to address diabetes, Parkinson's disease, and AMD, and these therapies are quickly progressing into early phase clinical trials.

Market competitors are also commercializing iPSC-derived products for use in drug development and discovery, disease modeling, and toxicology testing. Across the broader iPSC sector, FUJIFILM CDI (FCDI) is one of the largest and most dominant players. Cellular Dynamics International (CDI) was founded in 2004 by Dr. James Thomson at the University of Wisconsin-Madison, who in 2007 derived iPSC lines from human somatic cells for the first time. The feat was accomplished simultaneously by Dr. Shinya Yamanaka's lab in Japan. FUJIFILM acquired CDI in April 2015 for $307 million. Today, the combined company (FCDI) is the world's largest manufacturer of human cells created from iPSCs for use in research, drug discovery and regenerative medicine applications.

Another iPSC specialist is ReproCELL, a company that was established as a venture company originating from the University of Tokyo and Kyoto University in 2009. It became the first company worldwide to make iPSC products commercially available when it launched its ReproCardio product, which are human iPSC-derived cardiomyocytes. Within the European market, the dominant competitors are Evotec, Ncardia, and Axol Bioscience. Headquartered in Hamburg, Germany, Evotec is a drug discovery alliance and development partnership company. It is developing an iPSC platform with the goal to industrialize iPSC-based drug screening as it relates to throughput, reproducibility, and robustness. Today, Evotec's infrastructure represents one of the largest and most advanced iPSC platforms globally.

Ncardia was formed through the merger of Axiogenesis and Pluriomics in 2017. Its predecessor, Axiogenesis, was founded in 2011 with an initial focus on mouse embryonic stem cell-derived cells and assays. When Yamanaka's iPSC technology became available, Axiogenesis became the first European company to license it in 2010. Today, the combined company (Ncardia) is a global authority in cardiac and neural applications of human iPSCs. Founded in 2012, Axol Bioscience is a smaller but noteworthy competitor that specializes in iPSC-derived products. Headquartered in Cambridge, UK, it specializes in human cell culture, providing iPSC-derived cells and iPSC-specific cell culture products.

Of course, the world's largest research supply companies are also commercializing a diverse range of iPSC-derived products and services. Examples of these companies include Lonza, BD Biosciences, Thermo Fisher Scientific, Merck, Takara Bio, and countless others. In total, at least 90 market competitors now offer a diverse range of iPSC products, services, technologies, and therapeutics.

This global strategic report reveals all major market competitors worldwide, including their core technologies, strategic partnerships, and products under development. It covers the current status of iPSC research, biomedical applications, manufacturing technologies, patents, and funding events, as well as all known trials for the development of iPSC-derived cell therapeutics worldwide. Importantly, it profiles leading market competitors worldwide and presents a comprehensive market size breakdown for iPSCs by Application, Technology, Cell Type, and Geography (North America, Europe, Asia/Pacific, and Rest of World). It also presents total market size figures with projected growth rates through 2030.

TABLE OF CONTENTS

1. REPORT OVERVIEW

  • 1.1. Statement of the Report
  • 1.2. Executive Summary

2. INTRODUCTION

3. . CURRENT STATUS OF IPSC INDUSTRY

  • 3.1. Progress made in Autologous Cell Therapy using iPSCs
    • 3.1.1. Examples of Autologous iPSC-derived Cell Therapies in Development
    • 3.1.2. Manufacturing Timeline for Autologous iPSC-derived Cell Products
    • 3.1.3. Cost of iPSC Production
    • 3.1.4. Automation in iPSC Production
  • 3.2. Allogeneic iPSC-based Cell Therapies
  • 3.3. Share of iPSC-based Research within the Overall Stem Cell Industry
  • 3.4. Major Focus Areas of iPSC Companies
  • 3.5. Commercially Available iPSC-derived Cell Types
  • 3.6. Relative use of iPSC-derived Cell Types in Toxicology Testing Assays
  • 3.7. iPSC-derived Cell Types used in Clinical Trials
  • 3.8. Currently Available iPSC Technologies
    • 3.8.1. Brief Descriptions of some iPSC-related Technologies
      • 3.8.1.1. Nucleofector Technology
      • 3.8.1.2. Opti-ox Technology
      • 3.8.1.3. MOGRIFY Technology
      • 3.8.1.4. Transcription Factor-based iPSC Differentiation Technology
      • 3.8.1.5. Flowfect Technology
      • 3.8.1.6. Technology for Mass Production of Platelets
      • 3.8.1.7. SynFire Technology

4. HISTORY OF INDUCED PLURIPOTENT STEM CELLS (IPSCS)

  • 4.1. First iPSC Generation from Mouse Fibroblasts, 2006
  • 4.2. First Human iPSC Generation, 2007
  • 4.3. Creation of CiRA, 2010
  • 4.4. First High-Throughput Screening using iPSCs, 2012
  • 4.5. First iPSC Clinical Trial Approved in Japan, 2013
  • 4.6. First iPSC-RPE Cell Sheet Transplantation for AMD, 2014
  • 4.7. EBiSC Founded, 2014
  • 4.8. First Clinical Trial using Allogeneic iPSCs for AMD, 2017
  • 4.9. Clinical Trial for Parkinson's Disease using Allogeneic iPSCs, 2018
  • 4.10. Commercial iPSC Plant SMaRT Established, 2018
  • 4.11. First iPSC Therapy Center in Japan, 2019
  • 4.12. First U.S.-based NIH-Sponsored Clinical Trial using iPSCs, 2019
  • 4.13. Cynata Therapeutics' World's Largest Phase III Clinical Trial, 2020
  • 4.14. Tools and Know-how to Manufacture iPSCs in Clinical Trials, 2021
  • 4.15. Production of in-house iPSCs using Peripheral Blood Cells, 2022

5. RESEARCH PUBLICATIONS ON IPSCS

  • 5.1. Rapid Growth in iPSC Publications
    • 5.1.1. PubMd Publications on Pathophysiological Research using iPSCs
    • 5.1.2. PubMed Papers on Reprogramming
    • 5.1.3. PubMed Papers on iPSC Differentiation
    • 5.1.4. PubMed Papers on the use of iPSCs in Drug Discovery
    • 5.1.5. PubMed Papers on iPSC-based Cell Therapy
      • 5.1.5.1. Percent Share of Published Articles by Disease Type
      • 5.1.5.2. Percent Share of Articles by Country

6. IPSC: PATENT LANDSCAPE ANALYSIS

  • 6.1. iPSC Patent Applications by Jurisdiction
  • 6.2. iPSC Patent Applicants
  • 6.3. Inventors of iPSC Patents
  • 6.4. iPSC Patent Owners
  • 6.5. Legal Status of iPSC Patents

7. IPSC: CLINICAL TRIAL LANDSCAPE

  • 7.1. Number of iPSC Clinical Trials
  • 7.1. Recruitment Status of iPSC Clinical Trials
  • 7.3. iPSC Clinical Trials Stydy Designs
  • 7.4. Therapeutic & Non-Therapeutic iPSC Clinical Trials
    • 7.4.1. Non-Therapeutic Clinical Studies by Use
    • 7.4.2. Diseases Targeted by Therapeutic Studies
      • 7.4.2.1. Therapeutic Clinical Studies by Autologous & Allogeneic Sources of iPSCs
    • 7.4.3. Examples of iPSC-based Therapeutic Studies
  • 7.5. iPSC-based Trials by Phase of Study
  • 7.6. iPSC Clinical Trials by Funder Type
  • 7.7. Geographic Distribution of iPSC-based Clinical Trials
  • 7.8. Promising iPSC Product Candidates
    • 7.8.1. CYP-001, CYP-004 & CYP-006 from Cynata Therapeutics
    • 7.8.2. BioVAT-HF from Repairon GmbH
    • 7.8.3. HS-001 from Heartseed
    • 7.8.4. CNTY-101 from Century Therapeutics
    • 7.8.5. FT-576 & FT-819 from Fate Therapeutics
    • 7.8.6. RPE from National Eye Institute
    • 7.8.7. QN-019a from Qihan Biotech
    • 7.8.8. iPSC-CL from Heartworks, Inc.
  • 7.9. Companies having Preclinical iPSC Assets
    • 7.9.1. Aspen Neuroscience
    • 7.9.2. Ryne Biotech
    • 7.9.2. Bluerock Therapeutics
    • 7.9.4. Vita Therapeutics
    • 7.9.5. Hopstem Biotechnology
    • 7.9.6. Res Nova Bio, Inc.
    • 7.9.7. Cytovia Therapeutics
    • 7.9.8. Hebecell Corporation
    • 7.9.9. Sana Biotechnology
    • 7.9.10. SCG Cell Therapy Pte
    • 7.9.11. Cytomed
    • 7.9.12. Shoreline Biosciences
    • 7.9.13. Neukio Biotherapeutics
    • 7.9.14. Exacis Biotherapeutics
    • 7.9.15. CellOrigin Biotech

8. M&A, COLLABORATIONS & FUNDING ACTIVITIES IN IPSC SECTOR

  • 8.1. Mergers and Acquisitions (M&A) Sector
    • 8.1.1. Century Therapeutics & Clade Therapeutics
    • 8.1.2. Evotech & Rigenerand
    • 8.1.3. Fujifilm Corporation & Atara Biotherapeutics
    • 8.1.4. Catalent & RheinCell Therapeutics
    • 8.1.5. Axol Biosciences & Censo Biotechnologies
    • 8.1.6. Bayer AG & Bluerock Therapeutics
    • 8.1.7. Pluriomix & Axiogenesis
  • 8.2. Partnership/Collaboration & Licensing Deals in iPSC Sector
    • 8.2.1. Shinobi Therapeutics & Panasonic
    • 8.2.2. SCG Cell Therapy and A*STAR
    • 8.2.3. Charles River Laboratories & Pluristyx, Inc.
    • 8.2.4. Pluristyx, Inc. & National Resilience, Inc.
    • 8.2.5. University of Texas & GeneCure
    • 8.2.6. Heartseed, Inc. & Undisclosed Biotech
    • 8.2.7. Bluerock Therapeutics & Bit.bio
    • 8.2.8. Applied Stem Cell, Inc. & CIRM
    • 8.2.9. Resolution Therapeutics & OmniaBio, Inc.
    • 8.2.10. REPROCELL, Inc. & CIRM
    • 8.2.11. REPROCELL, Inc. & BioBridge Global
    • 8.2.12. Elevate Bio & CIRM
    • 8.2.13. Evotec & Sernova
    • 8.2.14. Evotec & Almiral
    • 8.2.15. Quell Therapeutics & Cellistic
    • 8.2.16. MDimmune & YiPSCELL
    • 8.2.17. Edigene & Neukio Biotherapeutics
    • 8.2.18. Matricelf & Ramot
    • 8.2.19. Evotec & Boehringer Ingelheim
    • 8.2.20. Pluristyx, Pancella & Implant Therapeutics
    • 8.2.21. Century Therapeutics & Bristol Myers Squibb
    • 8.2.22. Fujifilm Cellular Dynamics & Pheno Vista Biosciences
    • 8.2.23. Metrion Biosciences & Bioqube Ventures
    • 8.2.24. Cytovia Therapeutics & Cellectis
    • 8.2.25. Exacis Biotherapeutics & CCRM
    • 8.2.26. Cynata Therapeutics & Fujifilm Corporation
    • 8.2.27. Bone Therapeutics & Implant Therapeutics
    • 8.2.28. REPROCELL & TEXCELL
    • 8.2.29. Jacobio & Herbecell
    • 8.2.30. NeuCyte & KIF1A.ORG
    • 8.2.31. Kite & Shoreline Biosciences
    • 8.2.32. Neuropath Therapeutics & Hopstem Biotechnology
    • 8.2.33. Allele Biotech & Cellatoz
    • 8.2.34. Bluerock Therapeutics, Fujifilm Cellular Dynamics & Opsis Therapeutics
    • 8.2.35. Newcells & Takeda
    • 8.2.36. Biocentriq & Kytopen
    • 8.2.37. Fujifilm Cellular Dynamics & Sana Biotechnology
    • 8.2.38. Evotec & Medical Center Hamburg-Eppdorf (UKE)
    • 8.2.39. NeuCyte & Seaver Autism Center for Research and Treatment
    • 8.2.40. Cytovia Therapeutics & National Cancer Institute
    • 8.2.41. Mogrify & MRC Laboratory of Molecular Biology
  • 8.3. Venture Capital Funding in iPSC Sector
    • 8.3.1. Asgard Therapeutics
    • 8.3.2. Kenai Therapeutics
    • 8.3.3. Pluristyx
    • 8.3.4. Fujifilm Cellular Dynamics
    • 8.3.5. Mogrify Ltd.
    • 8.3.6. Heartseed, Inc.
    • 8.3.7. Elevate Bio
    • 8.3.9. Aspen Neurosciences
    • 8.3.10. Axol Biosciences
    • 8.3.11. Thyas, Co. Ltd
    • 8.3.12. Synthego
    • 8.3.13. Cellino Biotech, Inc
    • 8.3.14. Curi Bio
    • 8.3.15. Ncardia
    • 8.3.16. Evotec SE
    • 8.3.17. bit.bio
    • 8.3.18. Clade Therapeutics
    • 8.3.19. Shoreline Biosciences
    • 8.3.20. Kytopen
    • 8.3.21. Cytovia Therapeutics & CytoLynx
    • 8.3.22. TreeFrog Therapeutics
    • 8.3.23. HebeCell Corporation
    • 8.3.24. Neukio Biotherapeutics
    • 8.3.25. Stemson Therapeutics
    • 8.3.26. Vita Therapeutics
    • 8.3.27. Century Therapeutics
    • 8.3.28. Heartseed
    • 8.3.29. Mogrify
    • 8.3.30. Metrion Biosciences
    • 8.3.31. Elevate Bio
    • 8.3.32. Vita Therapeutics

9. GENERATION OF INDUCED PLURIPOTENT STEM CELLS (IPSCS)

  • 9.1. OSKM Cocktail
    • 9.1.1. Octamer-binding Transcription Factor 4 (Oct4)
    • 9.1.2. Sry-related Box (SOX) Factor 2
    • 9.1.3. Kruppel-like Factors (Klf4)
    • 9.1.4. C-Myc
  • 9.2. Pluripotency-Associated Transcription Factors and their Functions
    • 9.2.1. Different Combinations of Factors for Different Cell Sources
  • 9.3. Delivery of Reprogramming Factors
    • 9.3.1. Integrating Systems
      • 9.3.1.1. Retroviral Vectors
      • 9.3.1.2. Lentiviral Vectors
      • 9.3.1.3. piggyBack (PB) Transposon Method
    • 9.3.2. Non-Integrative Delivery Systems
      • 9.3.2.1. Adenoviral Vectors
      • 9.3.2.2. Sendai Viral Vectors
      • 9.3.2.3. Plasmid Vectors
      • 9.3.2.4. Minicircles
      • 9.3.2.5. oriP/Epstein-Barr Nuclear Antigen-1 (EBNA1)-based Episomes
      • 9.3.2.6. RNA Delivery Approach
      • 9.3.2.7. Proteins
    • 9.3.3. Comparison of Delivery Methods
  • 9.4. Genome Editing Technologies in iPSC Generation
    • 9.4.1. CRISPR/Cas9
  • 9.5. Available iPSC Lines and their applications

10. HUMAN IPSC BANKING

  • 10.1. Major Biobanks Storing iPSCs & iPSC Lines
    • 10.1.1. RIKEN
      • 10.1.1.1. Human iPS Cells offered by RIKEN
    • 10.1.2. WiCell
      • 10.1.2.1. WiCell's iPSC Lines
    • 10.1.3. Fujifilm Cellular Dynamics, Inc.
      • 10.1.3.1. iPSC Generation
    • 10.1.4. Sampled
      • 10.1.4.1. Biobanking Services
      • 10.1.4.2. Sampled's iPSC Services
    • 10.1.5. Coriell Institute for Medical Research
      • 10.1.5.1. iPSCs at Coriell
      • 10.1.5.2. Coriell's Biobank
        • 10.1.5.2.1. National Institute of General Medical Sciences (NIGMS)
        • 10.1.5.2.2. National Institute on Aging (NIA)
        • 10.1.5.2.3. Allen Cell Collection
        • 10.1.5.2.4. iPSC Collection from Rett Syndrome Research Trust
        • 10.1.5.2.5. Autism Research Resource
        • 10.1.5.2.6. HD Community BioRepository
        • 10.1.5.2.7. CDC Cell and DNA Repository
        • 10.1.5.2.8. NEI-AREDS Genetic Repository
    • 10.1.6. European Bank for Induced Pluripotent Stem Cells (EBiSC)
      • 10.1.6.1. EBiSC Catalogue
      • 10.1.6.2. EBiSC's iPSC Banking Service
  • 10.2. Cell Sources for iPSC Banks
  • 10.3. Reprogramming Methods in iPSC Banks
  • 10.4. Ownership and Investments made in iPSC Banks

11. BIOMEDICAL APPLICATIONS OF IPSCs

  • 11.1. iPSCs in Basic Research
    • 11.1.1. To Understand Cell Fate Control
    • 11.1.2. To Understand Cell Rejuvenation
    • 11.1.3. To Understand Pluripotency
    • 11.1.4. To Study Tissue & Organ Development
    • 11.1.5. To Produce Human Gametes from iPSCs
    • 11.1.6. Providers of iPSC-Related Services for Researchers
  • 11.2. Applications of iPSCs in Drug Discovery
    • 11.2.1. Drugs Tested for Cardiovascular Diseases using iPSCs
    • 11.2.2. Drugs Tested for Neurological Diseases using iPSC Lines
    • 11.2.3. Drugs Tested for Rare Diseases using iPSC Lines
  • 11.3. Applications of iPSCs in Toxicology Studies
    • 11.3.1. Examples of Drugs Tested for their Toxicity using iPSCs
    • 11.3.2. Relative Use of iPSC-Derived Cell Types used in Toxicity Testing Studies
  • 11.4. Applications of iPSCs in Disease Modeling
    • 11.4.1. Cardiovascular Diseases Modeled with iPSC-Derived Cells
      • 11.4.1.1. Percent Utilization of iPSCs for Cardiovascular Disease Modeling
    • 11.4.2. Modeling Liver Diseases using iPSC-Derived Hepatocytes
    • 11.4.3. iPSCs in Neurodegenerative Disease Modeling
    • 11.4.4. iPSC-derived Organoids for Disease Modeling
    • 11.4.5. Cancer-Derived iPSCs
  • 11.5. Applications of iPSCs in Cell-Based Therapies
    • 11.5.2. Companies Focusing only on iPSC-based Therapies
  • 11.6. Other Novel Applications of iPSCs
    • 11.6.1. Applications of iPSCs in Tissue Engineering
      • 11.6.1.1. 3D Bioprinting Techniques
      • 11.6.1.2. Biomaterials
      • 11.6.1.3. 3D Bioprinting Strategies
      • 11.6.1.4. Bioprinting iPSC-Derived Cells
    • 11.6.2. iPSCs from Farm Animals
      • 11.6.2.1. iPSCs Generated from Cattle
      • 11.6.2.2. iPSCs from Sheep
      • 11.6.2.3. iPSCs from Goat
      • 11.6.2.4. iPSCs Generated from Buffalo
      • 11.6.2.5. iPSC Generation from Avians
    • 11.6.3. iPSC Lines for the Preservation of Endangered Species of Animals
    • 11.6.4. iPSCs in Cultured Meat

12. MARKET ANALYSIS

  • 12.1. Global Market for iPSCs by Geography
  • 12.2. Global Market for iPSCs by Technology
  • 12.3. Global Market for iPSCs by Biomedical Application
  • 12.4. Global Market for iPSCs by Derived Cell Type
  • 12.5. Market Drivers
    • 12.5.1. Current Drivers Impacting the iPSC Market Place
  • 12.6. Market Restraints
    • 12.6.1. Economic Issues
    • 12.6.2. Genomic Instability
    • 12.6.3. Immunogenicity
    • 12.6.4. Biobanking

13. COMPANY PROFILES

  • 13.1. AcceGen
    • 13.1.1. ASC-CRISPR iPSC Gene Editing Technology Service
  • 13.2. Acellta, Ltd.
    • 13.2.1. Technology
      • 13.2.1.1. Maxells
      • 13.2.1.2. Singles
      • 13.2.1.3. Differentiation
      • 13.2.1.4. Manufacturing Facility
      • 13.2.1.5. Services
  • 13.3. AddGene, Inc.
    • 13.3.1. Viral Plasmids
  • 13.4. Allele Biotechnology, Inc.
    • 13.4.1. Technologies
      • 13.4.1.1. mRNA Genome Editing
      • 13.4.1.2. Single Cell Cloning
  • 13.5. ALSTEM, Inc.
    • 13.5.1. Cell Line Generation Tools
    • 13.5.2. Cell Immortalization Kits
    • 13.5.3. iPSC Kits
    • 13.5.4. Cell Lines
    • 13.5.5. Gene Editing
    • 13.5.6. iPS Cell Lines
    • 13.5.7. Virus Packaging Tools
  • 13.6. Altos Labs
    • 13.6.1. Altos' Science
  • 13.7. AMS Biotechnology, Ltd. (AMSBIO)
    • 13.7.1. Cell Line Products
      • 13.7.1.1. Disease Models
      • 13.7.1.2. Viral Production Services
  • 13.8. Applied StemCell (ASC)
    • 13.8.1. iPSC-Based Preclinical CRO Services
      • 13.8.1.1. Reprogramming to Differentiation
      • 13.8.1.2. Neurotoxicity Screening
    • 13.8.2. GMP Grade iPSC Services & Products
      • 13.8.2.1. GMP iPSC
      • 13.8.2.2. Knock-In Ready GMP TARGATT iPSCs
    • 13.8.3. GMP TARGATT iPSC-iNK Platform
    • 13.8.4. CRISPR iPSC Genome Editing Service
      • 13.8.4.1. CRISPR Knock-In & Point Matation iPS Cell Generation
      • 13.8.4.2. CRISPR iPSC Gene Knockout
      • 13.8.4.3. TARGATT Knock-In iPS Cells
    • 13.8.5. iPSC Generation Services
    • 13.8.6. iPSC Differentiation Service
    • 13.8.7. Stem Cell Products
  • 13.9. Asgard Therapeutics
  • 13.10. Aspen Neurosciences, Inc.
    • 13.10.1. Aspen's Clinical Pipeline
  • 13.11. Astellas Pharma, Inc.
    • 13.11.1. Allogeneic Cell Therapy
    • 13.11.2. Universal Donor Cell Technology
    • 13.11.3. Astella's Robust Pipeline
  • 13.12. Axol Biosciences, Ltd.
    • 13.12.1. Axol's Genetically Engineered Disease Lines
    • 13.12.2. Custom Human iPSC iPSC Services
    • 13.12.3. Axol's Products
  • 13.13. BioCentriq
    • 13.13.1. LEAP Advanced Therapy Platform
  • 13.14. Bit.bio
    • 13.14.1. Therapeutics
    • 13.14.2. Opti-Ox Reprogramming Technology
      • 13.14.2.1. ioCells
      • 13.14.2.2. ioWild Type Cells
      • 13.14.2.3. ioGlutamatergic Neurons
      • 13.14.2.4. ioSkeletal Myocytes
      • 13.14.2.5. ioGABAergic Neurons
      • 13.14.2.6. ioDisease Models
      • 13.14.2.7. ioGlutamatergic Neurons50CAGWT
  • 13.15. BlueRock Therapeutics LP
    • 13.15.1. BlueRock's Cell Therapy
    • 13.15.2. CELL + GENE Platform
    • 13.15.3. BlueRock's Cell Therapy Programs
  • 13.16. BrainXell
    • 13.16.1. Products
    • 13.16.2. Custom Service Projects
    • 13.16.3. In-House Assay Services
  • 13.17. Cartherics Pty, Ltd.
    • 13.17.1. Allogeneic CAR Immune Cells
  • 13.18. Catalent Biologics
    • 13.18.1. OneBio Integrated Suite
    • 13.18.2. Drug Substance Development
    • 13.18.3. Drug Product Development
    • 13.18.4. Analytical Services
    • 13.18.5. Catalent's iPSC Services
  • 13.19. Cellistic
    • 13.19.1. Pulse Platform
    • 13.19.2. Echo Platform
    • 13.19.3. iPSC-based Allogeneic Approach
      • 13.19.3.1. Model 1
      • 13.19.3.2. Model 2
  • 13.20. CellOrigin Biotech (Hangzhou), Co., Ltd.
  • 13.21. Celogics, Inc.
    • 13.21.1. Celo-Cardiomyocytes
  • 13.22. Cellular Engineering Technologies (CET)
    • 13.22.1. iPS Cell Reprogramming Methods
    • 13.22.2. Applications of CET's Stem Cells
      • 13.22.2.1. Hypoimmune Cell Lines
      • 13.22.2.2. Cell Therapy Development
      • 13.22.2.3. Disease Modeling
      • 13.22.2.4. Drug Development & Discovery
      • 13.22.2.5. Regenerative Medicine
      • 13.22.2.6. Toxicology Studies
    • 13.22.3. Products
  • 13.23. Cellusion, Inc.
    • 13.23.1. Orphan Drug Designation
    • 13.23.2. Bullous Keratopathy
  • 13.24. Century Therapeutics, Inc.
    • 13.24.1. Cell Therapy Platform
    • 13.24.2. Century's Product Pipeline
  • 13.25. Citius Pharmaceuticals, Inc.
    • 13.25.1. Stem Cell Platform
  • 13.26. Creative Bioarray
    • 13.26.1. Pluripotent Stem Cells
    • 13.26.2. iPSC-Derived Cells
    • 13.26.3. Services
  • 13.27. Curi Bio
    • 13.27.1. Disease Model Development Services
  • 13.28. Cynata Therapeutics, Ltd.
    • 13.28.1. Cymerus Platform
    • 13.28.2. Clinical Development for GvHD
    • 13.28.3. Osteoarthritis
    • 13.28.4. ARDS
    • 13.28.5. Diabetic Wounds
  • 13.29. Cytovia Therapeutics
    • 13.29.1. iPSC-derived NK & CAR-NK Cells
  • 13.30. DefiniGEN
    • 13.30.1. DefiniGEN's Platform
    • 13.30.2. Efficacy Screening Services
    • 13.30.3. Toxicology Screening
    • 13.30.4. Disease Models
    • 13.30.5. iPSC Cell Products
  • 13.31. Editas Medicine
    • 13.31.1. SLEEK Gene Editing
    • 13.31.2. iPSC-Derived NK Cells
  • 13.32. Editco Bio., Inc.
    • 13.32.1. Knockout iPS Cell Lines
    • 13.32.2. Knock-in iPS Cell Lines
  • 13.33. ElevateBio
    • 13.33.1. iPSC Technology
  • 13.34. Elixirgen Scientific, Inc.
    • 13.34.1. Technology
    • 13.34.2. Service Offerings
    • 13.34.3. iPSC Products
  • 13.35. Eterna Therapeutics
    • 13.35.1. Gene Editing
    • 13.35.2. Gene Delivery
  • 13.36. Evotec AG
    • 13.36.1. iPS Cell Therapies
    • 13.36.2. Drug Discovery Services
    • 13.36.3. Therapeutic Areas
  • 13.37. Eyestem
    • 13.37.1. Eyecyte-RPE
    • 13.37.2. Eyecyte-PRP
    • 13.37.3. Aircyte-AEC
  • 13.38. Fate Therapeutics
    • 13.38.1. iPSC Platform
    • 13.38.2. iPSC Manufacturing
    • 13.38.3. Product Pipeline
      • 13.38.3.1. FT576
      • 13.38.3.2. FT522
      • 13.38.3.3. FT819
      • 13.38.3.4. FT825
    • 13.38.4. Fate Therapeutics' Collaborations
      • 13.38.4.1. ONO Pharmaceutical, Co., Ltd.
      • 13.38.4.2. Masonic Cancer Center, University of Minnesota
      • 13.38.4.3. Memorial Sloan-Kettering Cancer Center
      • 13.38.4.4. Oslo University Hospital
  • 13.39. FUJIFILM Cellular Dynamics, Inc.
    • 13.39.1. Products
    • 13.39.2. FUJIFILM's Custom Services
    • 13.39.3. iPSC Disease Modeling
    • 13.39.4. Safety Pharmacology/Toxicology Testing
  • 13.40. Gameto
    • 13.40.1. Fertilo
  • 13.41. Greenstone Biosciences
  • 13.42. Heartseed, Inc.
    • 13.42.1. HS-001: The Lead Product Candidate
    • 13.42.2. Technologies
      • 13.42.2.1. Remuscularization
      • 13.42.2.2. Patented iPSC Production
      • 13.42.2.3. Differentiation
      • 13.42.2.4. Purification
      • 13.42.2.5. Spheroid
  • 13.43. HebeCell
    • 13.43.1. ProtoNK
    • 13.43.2. Retinal Photoreceptor Progenitors
    • 13.43.3. Nanoproteins
  • 13.44. Helios K.K.
    • 13.44.1. Research Activities
  • 13.45. Hera BioLabs
    • 13.45.1. Proprietary SRG Rat
    • 13.45.2. Cas-CLOVER Gene Editing Platform
    • 13.45.3. The piggyback Transposon System Platform
    • 13.45.4. Cell Line Development Services
    • 13.45.5. Custom Cell Line Engineering Services
    • 13.45.6. Animal Model Creation
    • 13.45.7. In vivo Research Services
      • 13.45.7.1. Custom Research Models
      • 13.45.7.2. Metabolic Disease Models
      • 13.45.7.3. Xenograft & PDX Services
      • 13.45.7.4. Pharmacology & Toxicology Services
  • 13.46. Hopstem Biotechnology
    • 13.46.1. Pipeline
  • 13.47. Implant Therapeutics, Inc.
    • 13.47.1. Services
  • 13.48. IN8bio
    • 13.48.1. The DeltEx Platform
    • 13.48.2. iPSC Gamma-Delta T Cells
  • 13.49. I Peace, Inc.
    • 13.49.1. GMP Products
    • 13.49.2. Custom Manufacturing Services
  • 13.50. IPS HEART
    • 13.50.1. IPS HEART's Approach
    • 13.50.2. ISX-9 CPC
    • 13.50.3. GIVI-MPC
  • 13.51. iPS Portal, Inc.
    • 13.51.1. Services
      • 13.51.1.1. Development Services
      • 13.51.1.2. Business Support Services
  • 13.52. iPSirius
    • 13.52.1. iPSirius' Platform
  • 13.53. iXCells Biotechnologies
    • 13.53.1. iPS Cell Products
    • 13.53.2. Preclinical Services
  • 13.54. Kenai Therapeutics, Inc.
  • 13.55. Khloris Biosciences, Inc.
  • 13.56. Kytopen
    • 13.56.1. Products
      • 13.56.1.1. Flowfect Discover
      • 13.56.1.2. Flowfect TX
      • 13.56.1.3. Flowfect Connect
  • 13.57. Laverock Therapeutics
    • 13.57.1. GEiGS and iPSCs
    • 13.57.2. Ex Vivo GEiGS-Enabled Cell Therapies
  • 13.58. Lindville Bio, Ltd.
    • 13.58.1. Services
  • 13.59. Lonza Group, Ltd.
    • 13.59.1. iPSC Manufacturing Expertise
    • 13.59.2. Nucleofector Technology
  • 13.60. Matricelf
    • 13.60.1. Solution to Spinal Cord Injury
  • 13.61. Megakaryon Corporation
    • 13.61.1. Production of Platelets from iPSCs
    • 13.61.2. Development of Megakaryocytes from iPSCs
    • 13.61.3. Safe Production of Platelets
    • 13.61.4. Research & Development Pipeline
  • 13.62. Metrion Biosciences, Ltd.
    • 13.62.1. Ion Channel High-Throughput Screening
    • 13.62.2. Clinical QTc/QRS Prediction using hiPSC-Derived Cardiomyocytes
  • 13.63. Mogrify
    • 13.63.1. MOGRIFY Platform
    • 13.63.2. epiMOGRIFY Platform
  • 13.64. Ncardia Services B.V.
    • 13.64.1. Ncyte Astrocytes
    • 13.64.2. Ncyte Endothelial Cells
    • 13.64.3. Ncyte Neural Mix
    • 13.64.4. Ncyte Smooth Muscle Cells
    • 13.64.5. Ncyte vCardiomyocytes
    • 13.64.6. Custom Disease Modeling Services
    • 13.64.7. High-Throughput Screening Services
    • 13.64.8. iPSC-Based Efficacy Assay Services
    • 13.64.9. iPSC-Based Safety & Toxicity Assays
  • 13.65. NeuCyte
    • 13.65.1. Technology
    • 13.65.2. Drug Discovery
  • 13.66. Neukio Biotherapeutics
    • 13.66.1. Allogeneic Immunotherapy Platform
  • 13.67. Newcells Biotech
    • 13.67.1. Retina Models
    • 13.67.2. Retinal Organoids
    • 13.67.3. Retinal Pigment Epithelium (RPE)
    • 13.67.4. Kidney Proximal Tubule Cell Model
    • 13.67.5. Assay-Ready aProximate
    • 13.67.6. Glomerular Toxicity and Disease Modeling
    • 13.67.7. Lung Airway Models
    • 13.67.8. Disease Modeling Services
      • 13.67.8.1. In vitro Retinal Disease Modeling for Retinal Therapy
      • 13.67.8.2. in vitro Evaluation of Retinal Toxicity Services
      • 13.67.8.3. Gene Therapy Services
      • 13.67.8.4. Drug Transporter Interactions & DDI Services
      • 13.67.8.5. Cross Species Comparison Services
      • 13.67.8.6. Kidney Toxicity Services
      • 13.67.8.7. Kidney Disease Modeling Services
      • 13.67.8.8. Fibroblast Assay Services
      • 13.67.8.9. Lung Toxicity Study Services
  • 13.68. NEXEL, Co., Ltd.
    • 13.68.1. Products
      • 13.68.1.1. Cardiosight-S
      • 13.68.1.2. Hepatosight-S
      • 13.68.1.3. Neurosight-S
    • 13.68.2. Curi Bio Systems
      • 13.68.2.1. Mantarray
      • 13.68.2.2. Cytostretcher
      • 13.68.2.3. NanoSurface Plates
    • 13.68.3. Services
      • 13.68.3.1. NeXST (Next Xight Screening Test)
      • 13.68.3.2. Curi Engine SVC
  • 13.69. Notch Therapeutics
    • 13.69.1. Technology
    • 13.69.2. Product Development
  • 13.70. Orizuru Therapeutics, Inc.
    • 13.70.1. iCM Project
  • 13.71. Phenocell SAS
    • 13.71.1. iPSC-derived RPE Cells for Age-related Macular Degeneration (AMD)
    • 13.71.2. R&D Solutions for Acne & Hyperseborrhea
    • 13.71.3. Skin Pigmentation Research & Testing Platform
    • 13.71.4. Cells & Kits
  • 13.72. Pluristyx
    • 13.72.1. The panCELLa Platform
    • 13.72.2. RTD iPSC & GMP Cell Banks
    • 13.72.3. Development Services
    • 13.72.4. Custom Gene Editing
    • 13.72.5. iPSC GMP Manufacturing Expertise
    • 13.72.6. Custom Gene Editing
    • 13.72.7. FailSafe
    • 13.72.8. iACT Stealth Cells
    • 13.72.9. Products
      • 13.72.9.1. PluriBank PSCs
      • 13.72.9.2. ESI Pluripotent Stem Cells
      • 13.72.9.3. Wild Type & Disease Affected PSCs
    • 13.72.10. Differentiated Cells
  • 13.73. ReNeuron
    • 13.73.1. Technology Platform
  • 13.74. Repairon GmbH
    • 13.74.1. Technology
      • 13.74.1.1. Engineered Heart Muscle (EHM)
  • 13.75. REPROCELL USA, Inc.
    • 13.75.1. Services
      • 13.75.1.1. Donor Recruitment and Patient-Derived Cells
      • 13.75.1.2. Example Case Study
      • 13.75.1.3. Target Cell Isolation
      • 13.75.1.4. iPSC Reprograming Service
      • 13.75.1.5. iPSC Expansion, Characterization and Banking Services
      • 13.75.1.6. Neuronal Differentiation Services
      • 13.75.1.7. Gene Editing Services
    • 13.75.2. REPROCELL's iPSC Products
      • 13.75.2.1. Stemgent
  • 13.76. Res Nova Bio, Inc.
    • 13.76.1. Preclinical Study
  • 13.77. Sartorius CellGenix GmbH
    • 13.77.1. Products
  • 13.78. Shinobi Therapeutics
  • 13.79. Shoreline Biosciences
    • 13.79.1. iMACs
  • 13.80. StemSight
    • 13.80.1. Technology
  • 13.81. Stemson Therapeutics
    • 13.81.1. iPSCs for Hair Follicles
  • 13.82. Stemina Biomarker Discovery
    • 13.82.1. Cardio quickPREDICT
    • 13.82.2. devTOX quickPREDICT
  • 13.83. Tempo Bioscience, Inc.
    • 13.83.1. Tempo-iAstro
    • 13.83.2. Tempo-iBMEC
    • 13.83.3. Tempo-iCardio
    • 13.83.4. Tempo-iCort
    • 13.83.5. Tempo-iDopaNer
    • 13.83.6. Tempo-iLSEC
    • 13.83.7. Tempo-iKupffer
    • 13.83.8. Tempo-iHepStellate
    • 13.83.9. Tempo-iHep3D
    • 13.83.10. Tempo-iKer
    • 13.83.11. Tempo-iKidneyPod
    • 13.83.12. Tempo-iMel
    • 13.83.13. Tempo-iMG
    • 13.83.14. Tempo-iMono
    • 13.83.15. Tempo-iMotorNer
    • 13.83.16. Tempo-iMSC
    • 13.83.17. Tempo-iNStem
    • 13.83.18. Tempo-iOligo
    • 13.83.19. Tempo-iOsteo
    • 13.83.20. Tempo-iPeri
    • 13.83.21. Tempo-iPhago
    • 13.83.22. Tempo-iRPE
    • 13.83.23. Tempo-iSchwann
    • 13.83.24. Tempo-iSenso
    • 13.83.25. Tempo StemBank
  • 13.84. Uncommon (Higher Steaks)
    • 13.84.1. iPSC-Based Cultured Pork
  • 13.85. Universal Cells
    • 13.85.1. Technologies
      • 13.85.1.1. Recombinant Adeno-Associated Virus
      • 13.85.1.2. PSCs for Every Organ
      • 13.85.1.3. Universal Donor Cells
      • 13.85.1.4. HLA Engineering
  • 13.86. VCCT, Inc.
    • 13.86.1. Regenerating RPE Cells
  • 13.87. ViaCyte, Inc.
    • 13.87.1. Technology
      • 13.87.1.1. Autologous Approach
      • 13.87.1.2. Allogeneic Approach
    • 13.87.2. Pipeline
  • 13.88. Vita Therapeutics
    • 13.88.1. Technology
  • 13.89. XCell Science
    • 13.89.1. Control Lines
      • 13.89.1.1. XCL-1
      • 13.89.1.2. XCL-6
    • 13.89.2. Cell Products
      • 13.89.2.1. Control Lines
      • 13.89.2.2. Knock-out Lines
      • 13.89.2.3. Reporter Lines
    • 13.89.3. Services
  • 13.90. Yashraj Biotechnology, Ltd.
    • 13.90.1. iPSC Products
    • 13.90.2. Contract Research Services

INDEX OF FIGURES

  • FIGURE 3.1: Development of iPSC-based Autologous Cell Therapy for Canavan Disease
  • FIGURE 3.2: Manufacturing Timeline for Autologous iPSC-derived Cell Products
  • FIGURE 3.3: Cost of iPSC Production
  • FIGURE 3.4: Technical Set Up of the Stem Cell Factory (SCF)
  • FIGURE 3.5: Development of iPSC-based Allogeneic Cell Therapy
  • FIGURE 3.6: Share of iPSC-based Research within the Overall Stem Cell Industry
  • FIGURE 3.7: Major Focus Areas of iPSC Companies
  • FIGURE 3.8: Relative use of iPSC-derived Cell Types in Toxicology Studies
  • FIGURE 3.9: Comparison of Lipofection and Nucleofection Technologies
  • FIGURE 5.1: No. of Research Publications on iPSC in PubMed.gov, 2010-May 29, 2024
  • FIGURE 5.2: Pubmed Publications on Pathophysiological Research using iPSCs
  • FIGURE 5.3: PubMed Publications on Reprogramming Somatic Cells
  • FIGURE 5.4: No. of PubMed Papers on iPSC Differentiation
  • FIGURE 5.5: PubMed Papers on the use of iPSCs in Drug Discovery
  • FIGURE 5.6: PubMed Papers on iPSC-based Cell Therapy
  • FIGURE 5.7: Percent Share of Published Articles by Disease Type
  • FIGURE 5.8: Percent Share of Articles by Country
  • FIGURE 6.1: Number of iPSC Patents Filed by Year, 2000-May 5, 2024
  • FIGURE 7.1: Number of Clinical Trials by Year
  • FIGURE 7.2: iPSC Clinical Trials by Design, May 2024
  • FIGURE 7.3: Therapeutic & Non-Therapeutic iPSC Clinical Trials
  • FIGURE 7.4: Non-Therapeutic Clinical Trials by Use
  • FIGURE 7.5: Percent Share of Diseases Targeted by Therapeutic Studies
  • FIGURE 7.6: Share of Autologous & Allogeneic iPSCs in Clinical Studies
  • FIGURE 7.7: iPSC Clinical Trials by Phase of Study
  • FIGURE 7.8: iPSC Clinical Trials by Funder Type
  • FIGURE 9.1: The Roles of OSKM Factors in the Induction of iPSCs
  • FIGURE 9.2: Delivery Methods for iPSC Induction
  • FIGURE 9.3: Schematic of Retroviral Delivery Method
  • FIGURE 9.4: Schematic of Lentiviral Delivery Method
  • FIGURE 9.5: Schematic of piggyBack Transposon Delivery Method
  • FIGURE 9.6: Shematic of Adenoviral Vector Delivery
  • FIGURE 9.7: oriP/Epstein-Barr Nuclear Antigen-1 (EBNA1)-based Episomes
  • FIGURE 9.8: RNA Delivery Approach
  • FIGURE 9.9: Protein Delivery
  • FIGURE 10.1: PubMed Citations for iPSCs and iPSC Lines registered in hPSCreg
  • FIGURE 10.1: Disease States represented by NIGMS Cell Lines
  • FIGURE 10.2: Subject Age Range in Collections
  • FIGURE 11.1: Biomedical Applications of iPSCs
  • FIGURE 11.1: Advantages of iPSC usage in Drug Discovery
  • FIGURE 11.2: iPSCs and their Potential for Toxicity Testing and Drug Screening
  • FIGURE 11.3: Relative Use of iPSC-Derived Cell Types used in Toxicity Testing Studies
  • FIGURE 11.4: Percent Share Utilization of iPSCs for Cardiovascular Disease Modeling
  • FIGURE 11.5: Techniques used for iPSC Bioprinting
  • FIGURE 12.1: Estimated Global Market for iPSCs by Geography, 2023-2030
  • FIGURE 12.2: Estimated Global Market for iPSCs by Technology, 2023-2030
  • FIGURE 12.3: Estimated Global Market for iPSCs by Biomedical Application, 2023-2030
  • FIGURE 12.4: Global Market for iPSCs by Derived Cell Type, 2023
  • FIGURE 13.1: dCas9-VPR System
  • FIGURE 13.2: Universal Donor Cell Technology
  • FIGURE 13.3: Century's Approach to iPSC Therapy
  • FIGURE 13.4: FT576
  • FIGURE 13.5: FT522
  • FIGURE 13.6: FT819
  • FIGURE 13.7: FT825
  • FIGURE 13.8: Developing iPSC Neurons by SynFire Technology
  • FIGURE 13.9: Mantarray Instrument
  • FIGURE 13.10: Cytostretcher
  • FIGURE 13.11: NanoSurface Plate
  • FIGURE 13.12: Repairon's Engineered Heart Muscle (EHM)
  • FIGURE 13.13: REPROCELL's Example Case Study: Alzheimer's Disese
  • FIGURE 13.14: Cardio quickPREDICT Process
  • FIGURE 13.15: devTOX quickPREDICT Process

INDEX OF TABLES

  • TABLE 3.1: Examples of Autologous iPSC-derived Cell Therapies in Development
  • TABLE 3.2: Examples of Clinical Trials involving Allogeneic iPSCs
  • TABLE 3.3: Commercially Available iPSC-derived Cell Types
  • TABLE 3.4: iPSC-derived Cell Types used in Clinical Trials
  • TABLE 4.1: Timeline of Important Milestones Reached in iPSC Industry
  • TABLE 5.1: No. of Research Publications on iPSC in PubMed.gov, 2006-June 1, 2024
  • TABLE 6.1: iPSC Patent Applications by Jurisdiction as of May 5, 2024
  • TABLE 6.2: Patent Applicants as of May 5, 2024
  • TABLE 6.3: iPSC Patent Inventors
  • TABLE 6.4: iPSC Patent Owners
  • TABLE 6.5: Legal Status of iPSC Patents
  • TABLE 7.1: Recruitment Status of iPSC Clinical Trials, May 2, 2024
  • TABLE 7.2: Examples of iPSC-based Therapeutic Interventional Studies
  • TABLE 7.3: The Promising iPSC-based Product Candidates Developed across the World
  • TABLE 7.4: Examples of Key iPSC-based Preclinical Studies
  • TABLE 8.1: M&A in iPSC Sector
  • TABLE 8.2: Partnership/Collaboration & Licensing Deals in iPSC Sector, 2021-May 2024
  • TABLE 8.3: Venture Capital Funding in iPSC Sector, 2021-May 2024
  • TABLE 9.1: Pluripotency-Associated Transcription Factors and their Functions
  • TABLE 9.2: Diffewrent Combinations of Factors for Different Cell Sources
  • TABLE 9.3: Comparison of Delivery Methods of Reprogramming Factors
  • TABLE 9.4: iPSC Disease Models Generated by CRISPR/Cas9
  • TABLE 9.5: Available iPSC lines and their Major Applications
  • TABLE 10.1: Major Biobanks Storing iPSCs & iPSC Lines
  • TABLE 10.2: Disease-Specific iPSCs offered by RIKEN
  • TABLE 10.3: Types of iPS Cell Lines available with WiCell - a Sample
  • TABLE 10.4: The Four California Institutions recruiting Tissue Donors
  • TABLE 10.5: iPSC Disease Samples with FCDI
  • TABLE 10.6: Examples of Allen's Fluorescently Tagged hiPSC lines
  • TABLE 10.7: Rett Syndrome Trust's iPSC Collection
  • TABLE 10.8: Cell Sources & Reprogramming Methods for iPSC Banks
  • TABLE 10.9: Ownership of iPSC Banks and the Investments Made
  • TABLE 11.1: Providers of iPSC-Related Services and Products for Researchers
  • TABLE 11.2: Drugs Tested for Cardiovascular Diseases using iPSCs
  • TABLE 11.3: Drugs Tested for Neurological Diseases using iPSC Lines
  • TABLE 11.4: Drugs Tested for Rare Diseases using iPSC Lines
  • TABLE 11.5: Examples of Drugs Tested for their Toxicity using iPSC-Derved Cell Lines
  • TABLE 11.6: Published Human iPSC Models
  • TABLE 11.7: Partial List of Cardiovascular & other Diseases Modeled using iPSCs
  • TABLE 11.8: Liver Diseases Modeled using iPSCs
  • TABLE 11.9: Examples of iPSC-Based Neurodegenerative Diseae Modeling
  • TABLE 11.10: Organoid Types and Diseae Modeling Applications
  • TABLE 11.11: Examples of Cancer-Derived iPSCs
  • TABLE 11.12: Major Sponsors of iPSC-based Cell Therapies
  • TABLE 11.13: Selected Interventional Clinical Trials of iPSC-Based Cell Therapy
  • TABLE 11.14: Companies focusing only on iPSC-based Therapies
  • TABLE 11.15: Features of Different iPSC Bioprinting Techniques
  • TABLE 11.16: Bioprinting of iPSC-Derived Cells
  • TABLE 11.17: iPSCs Generation from Cattle
  • TABLE 11.18: iPSCs Generation from Sheep
  • TABLE 11.19: iPSCs Generation from Goat
  • TABLE 11.20: iPSCs Generation from Buffalo
  • TABLE 11.21: iPSC Generation from Avians
  • TABLE 11.22: Timeline of Development of iPSCs Generated from Domestic & Wild Animals
  • TABLE 12.1: Estimated Global Market for iPSCs by Geography, 2023-2030
  • TABLE 12.2: Estimated Global Market for iPSCs by Technology, 2023-2030
  • TABLE 12.3: Estimated Global Market for iPSCs by Biomedical Application, 2023-2030
  • TABLE 12.4: Global Market for iPSCs by Derived Cell Type, 2023-2030
  • TABLE 13.1: Aspen's Clinical Pipeline
  • TABLE 13.2: Astella's Robust & Competitive Pipeline
  • TABLE 13.3: Bit.bio's Cell Therapy Pipeline
  • TABLE 13.4: BlueRock's Pipeline of Cell Therapy Products
  • TABLE 13.5: Cartheric's R&D Pipeline
  • TABLE 13.6: CellOrigin's R&D Pipeline
  • TABLE 13.7: Cellusion's Pipeline
  • TABLE 13.8: Century's Pipeline Products
  • TABLE 13.9: Cytovia's iPSC-Derived CAR-iNK Product Pipeline
  • TABLE 13.10: Eterna's R&D Pipeline
  • TABLE 13.11: Eyestem's Product Pipeline
  • TABLE 13.12: Fate Therapeutic's Product Pipeline
  • TABLE 13.13: Examples of Greenstone's iPSC Line Collections
  • TABLE 13.14: HebeCell's Product Pipeline
  • TABLE 13.15: Helio's Research & Development Status
  • TABLE 13.16: Hopstem's Product Pipeline
  • TABLE 13.17: IPS HEART's R&D Pipeline
  • TABLE 13.18: iPSirius' R&D Pipeline
  • TABLE 13.19: Kenai Therapeutic's Pipeline
  • TABLE 13.20: Khloris Biosciences' iPSC-Based Clinical Programs
  • TABLE 13.21: Laverock's R&D Pipeline
  • TABLE 13.22: Megakaryon's Research & Development Pipeline
  • TABLE 13.23: NEXEL Pipeline
  • TABLE 13.24: Notch Therapeutic's R&D Pipeline
  • TABLE 13.25: Available Stemgent iPSCs with REPROCELL
  • TABLE 13.26: Shinobi Therapeutics' Product Pipeline
  • TABLE 13.27: ViaCyte's Product Pipeline
  • TABLE 13.28: Vita Therapeutic's R&D Pipeline