封面
市場調查報告書
商品編碼
1517364

2022-2032 年全球 AIOps 平台市場規模研究(按組件、部署、組織規模、應用、垂直和區域預測)

Global AIOps Platform Market Size Study, by Component, by Deployment, by Organization Size, by Application, by Vertical and Regional Forecasts 2022-2032

出版日期: | 出版商: Bizwit Research & Consulting LLP | 英文 200 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2023年全球AIOps平台市場價值約134.4億美元,預計在2024-2032年預測期內將以超過21.76%的健康成長率成長。 IT 營運人工智慧 (AIOps) 平台利用先進演算法、機器學習和巨量資料分析來自動化和增強 IT 營運。透過仔細分析來自各種 IT 工具和設備的大量營運資料,AIOps 平台有助於問題檢測、根本原因分析和主動問題解決。因此,這些平台可以簡化 IT 營運、最大限度地減少停機時間並最佳化服務效能。 IT 基礎架構的複雜性不斷升級和資料量的快速成長是推動市場成長的關鍵驅動力。然而,市場面臨重大挑戰,例如缺乏能夠有效實施和管理 AIOps 平台的熟練專業人員,以及阻礙這些平台採用的資料安全和隱私問題。

對高效且經過驗證的服務產品的需求凸顯了 AIOps 中平台組件的重要性,其中包括資料聚合、分析、機器學習模型和視覺化儀表板的基本工具。隨著 IT 環境變得越來越複雜,傳統的監控工具難以應付資料的數量、速度和種類,因此需要採用 AIOps 平台。此外,服務組件涵蓋諮詢、支援、維護和託管服務,在 AIOps 平台的部署、整合和營運中發揮關鍵作用。

部署環境正在向基於雲端的模型發生重大轉變,這主要是由於其靈活性、可擴展性和成本效益。基於雲端的部署透過將基礎設施管理外包給服務提供者來促進遠端工作並減少維護要求。相反,本地部署吸引優先考慮資料控制和合規性的組織,提供廣泛的客製化潛力和更高的安全性,但代價是大量的前期投資和持續維護。

大型企業通常具有廣泛的 IT 基礎設施和大量資料產生的特點,他們發現 AIOps 平台對於即時監控、事件管理和 IT 服務自動化不可或缺。中小型企業 (SME) 在面臨較低複雜性的同時,也受益於 AIOps 解決方案提供的營運效率和成本降低,這些解決方案旨在具有成本效益、易於實施且需要最少的維護。

在應用方面,AIOps平台擴大用於網路和安全管理、應用效能分析、基礎設施管理和即時分析。金融、醫療保健和技術等行業優先考慮基礎設施管理,而網路和安全管理對於電信、政府和託管 IT 服務供應商至關重要。即時提供可操作情報的能力使得 AIOps 平台對於零售、製造和物流領域的決策具有不可估量的價值。

全球 AIOps 平台市場研究涵蓋的關鍵區域包括亞太地區、北美、歐洲、拉丁美洲和世界其他地區。在成熟的 IT 基礎設施和大量早期採用人工智慧技術的大型企業的推動下,北美被認為是 AIOps 平台市場的主導地區。此外,嚴格的監管環境和對數位轉型的關注,顯示出對確保遵守地區法規和規範的 AIOps 解決方案的強烈需求。然而,由於政府措施的不斷增加和 IT 行業的蓬勃發展,預計亞太地區的市場在預測期內將以最快的速度成長,其中中國、日本和印度等國家處於領先地位。

市場的詳細細分和細分市場解釋如下:

目錄

第 1 章:全球 AIOps 平台市場執行摘要

  • 全球AIOps平台市場規模及預測(2022-2032)
  • 區域概要
  • 分部摘要
    • 按組件
    • 按部署
    • 按組織規模
    • 按申請
    • 按垂直方向
  • 主要趨勢
  • 經濟衰退的影響
  • 分析師推薦與結論

第 2 章:全球 AIOps 平台市場定義與研究假設

  • 研究目的
  • 市場定義
  • 研究假設
    • 包含與排除
    • 限制
    • 供給側分析
      • 可用性
      • 基礎設施
      • 監管環境
      • 市場競爭
      • 經濟可行性(消費者的角度)
    • 需求面分析
      • 監理框架
      • 技術進步
      • 環境考慮
      • 消費者意識和接受度
  • 估算方法
  • 研究涵蓋的年份
  • 貨幣兌換率

第 3 章:全球 AIOps 平台市場動態

  • 市場促進因素
    • IT 基礎架構的複雜性不斷增加
    • 營運數據量不斷成長
    • 人工智慧和機器學習的進步
  • 市場挑戰
    • 缺乏熟練的專業人員
    • 資料安全和隱私問題
  • 市場機會
    • 逐步採用基於雲端的解決方案
    • 與智慧 IT 營運解決方案整合
    • 擴展到新的垂直領域

第 4 章:全球 AIOps 平台市場產業分析

  • 波特的五力模型
    • 供應商的議價能力
    • 買家的議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭競爭
    • 波特五力模型的未來方法
    • 波特的 5 力影響分析
  • PESTEL分析
    • 政治的
    • 經濟
    • 社會的
    • 技術性
    • 環境的
    • 合法的
  • 頂級投資機會
  • 最佳制勝策略
  • 顛覆性趨勢
  • 產業專家視角
  • 分析師推薦與結論

第 5 章:2022-2032 年全球 AIOps 平台市場規模及組件預測

  • 細分儀表板
  • 全球 AIOps 平台市場:2022 年和 2032 年組件收入趨勢分析
    • 平台
    • 服務

第 6 章:2022-2032 年全球 AIOps 平台市場規模與部署預測

  • 細分儀表板
  • 全球 AIOps 平台市場:2022 年和 2032 年部署收入趨勢分析
    • 本地部署

第 7 章:2022-2032 年全球 AIOps 平台市場規模及組織規模預測

  • 細分儀表板
  • 全球 AIOps 平台市場:2022 年和 2032 年組織規模收入趨勢分析
    • 大型企業
    • 中小企業

第 8 章:2022-2032 年全球 AIOps 平台市場規模及應用預測

  • 細分儀表板
  • 全球 AIOps 平台市場:2022 年和 2032 年應用收入趨勢分析
    • 應用效能分析
    • 基礎設施管理
    • 網路與安全管理
    • 即時分析

第 9 章:2022-2032 年全球 AIOps 平台市場規模及垂直產業預測

  • 細分儀表板
  • 全球 AIOps 平台市場:2022 年和 2032 年垂直收入趨勢分析
    • BFSI
    • 能源與公用事業
    • 政府與國防
    • 醫療保健與生命科學
    • 資訊科技與電信
    • 媒體與娛樂
    • 零售與電子商務

第 10 章:2022-2032 年全球 AIOps 平台市場規模及區域預測

  • 北美AIOps平台市場
    • 美國AIOps平台市場
      • 2022-2032 年組件細分尺寸與預測
      • 2022-2032 年部署細分規模與預測
      • 2022-2032 年組織規模細分規模與預測
      • 2022-2032 年應用細分規模與預測
      • 垂直細分規模與預測,2022-2032
    • 加拿大AIOps平台市場
  • 歐洲AIOps平台市場
    • 英國AIOps平台市場
    • 德國AIOps平台市場
    • 法國AIOps平台市場
    • 西班牙AIOps平台市場
    • 義大利AIOps平台市場
    • 歐洲其他地區 AIOps 平台市場
  • 亞太AIOps平台市場
    • 中國AIOps平台市場
    • 印度AIOps平台市場
    • 日本AIOps平台市場
    • 澳洲AIOps平台市場
    • 韓國AIOps平台市場
    • 亞太地區其他 AIOps 平台市場
  • 拉丁美洲AIOps平台市場
    • 巴西AIOps平台市場
    • 墨西哥AIOps平台市場
    • 拉丁美洲其他地區 AIOps 平台市場
  • 中東和非洲 AIOps 平台市場
    • 沙烏地阿拉伯AIOps平台市場
    • 南非AIOps平台市場
    • 中東和非洲其他地區 AIOps 平台市場

第 11 章:競爭情報

  • 重點企業SWOT分析
    • 亞馬遜網路服務公司
    • 大貓熊公司
    • BMC 軟體公司
  • 頂級市場策略
  • 公司簡介
    • Amazon Web Services, Inc.
      • 關鍵訊息
      • 概述
      • 財務(視數據可用性而定)
      • 產品概要
      • 市場策略
    • BigPanda, Inc.
    • BMC Software, Inc.
    • Broadcom Inc.
    • Cisco Systems, Inc.
    • CloudFabrix Software Inc.
    • Datadog, Inc.
    • Dynatrace, Inc.
    • Google LLC
    • Hewlett Packard Enterprise Company
    • IBM Corporation
    • Microsoft Corporation
    • New Relic, Inc.
    • ServiceNow, Inc.
    • Tata Consultancy Services Limited

第 12 章:研究過程

  • 研究過程
    • 資料探勘
    • 分析
    • 市場預測
    • 驗證
    • 出版
  • 研究屬性
簡介目錄

Global AIOps Platform Market is valued at approximately USD 13.44 billion in 2023 and is anticipated to grow with a healthy growth rate of more than 21.76% over the forecast period 2024-2032. An Artificial Intelligence for IT Operations (AIOps) platform leverages advanced algorithms, machine learning, and big data analytics to automate and enhance IT operations. By meticulously analyzing vast volumes of operational data from various IT tools and devices, AIOps platforms facilitate problem detection, root cause analysis, and proactive issue resolution. Consequently, these platforms streamline IT operations, minimize downtime, and optimize service performance. The escalating complexity of IT infrastructure and the burgeoning volume of data are key drivers propelling market growth. However, the market faces significant challenges, such as a scarcity of skilled professionals capable of effectively implementing and managing AIOps platforms, alongside concerns regarding data security and privacy that hinder the adoption of these platforms.

The demand for efficient and proven service offerings has underscored the importance of the platform component within AIOps, which includes essential tools for data aggregation, analysis, machine learning models, and visualization dashboards. As IT environments grow increasingly complex, traditional monitoring tools struggle to cope with the volume, velocity, and variety of data, necessitating the adoption of AIOps platforms. Additionally, the services component, which encompasses consulting, support, maintenance, and managed services, plays a pivotal role in the deployment, integration, and operation of AIOps platforms.

The deployment landscape is witnessing a significant shift towards cloud-based models, primarily due to their flexibility, scalability, and cost-effectiveness. Cloud-based deployments facilitate remote work and reduce maintenance requirements by outsourcing infrastructure management to service providers. Conversely, on-premise deployments appeal to organizations prioritizing data control and compliance, offering extensive customization potential and heightened security at the expense of significant upfront investment and ongoing maintenance.

Large enterprises, typically characterized by extensive IT infrastructures and substantial data generation, find AIOps platforms indispensable for real-time monitoring, incident management, and IT service automation. Small and medium enterprises (SMEs), while facing less complexity, also benefit from the operational efficiency and cost reduction offered by AIOps solutions, which are designed to be cost-effective, easy to implement, and require minimal maintenance.

In terms of application, AIOps platforms are increasingly adopted for network and security management, application performance analysis, infrastructure management, and real-time analytics. Industries such as finance, healthcare, and technology prioritize infrastructure management, while network and security management is crucial for telecommunications, government, and managed IT service providers. The ability to provide actionable intelligence in real-time makes AIOps platforms invaluable for decision-making in retail, manufacturing, and logistics sectors.

The key regions considered for the global AIOps platforms market study include Asia Pacific, North America, Europe, Latin America, and Rest of the World. North America is accounted as the dominating region in the AIOps platform market, driven by mature IT infrastructure and a significant presence of large-scale enterprises that are early adopters of AI technology. Also, presence of stringent regulatory environment and focus on digital transformation, exhibits strong demand for AIOps solutions that ensure compliance with regional regulations and norms. Whereas, the market in Asia Pacific is anticipated to grow at the fastest rate over the forecast period owing to the rising government initiatives and a burgeoning IT sector, with countries like China, Japan, and India at the forefront.

Major market players included in this report are:

  • Amazon Web Services, Inc.
  • BigPanda, Inc.
  • BMC Software, Inc.
  • Broadcom Inc.
  • Cisco Systems, Inc.
  • CloudFabrix Software Inc.
  • Datadog, Inc.
  • Dynatrace, Inc.
  • Google LLC
  • Hewlett Packard Enterprise Company
  • IBM Corporation
  • Microsoft Corporation
  • New Relic, Inc.
  • ServiceNow, Inc.
  • Tata Consultancy Services Limited

The detailed segments and sub-segments of the market are explained below:

By Component:

  • Platform
  • Services

By Deployment:

  • Cloud
  • On-premise

By Organization Size:

  • Large Enterprises
  • Small & Medium Enterprises

By Application:

  • Application Performance Analysis
  • Infrastructure Management
  • Network & Security Management
  • Real-Time Analytics

By Vertical:

  • BFSI
  • Energy & Utilities
  • Government & Defense
  • Healthcare & Life Sciences
  • IT & Telecom
  • Media & Entertainment
  • Retail & eCommerce

By Region:

  • North America
  • U.S.
  • Canada
  • Europe
  • UK
  • Germany
  • France
  • Spain
  • Italy
  • ROE
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • RoAPAC
  • Latin America
  • Brazil
  • Mexico
  • RoLA
  • Middle East & Africa
  • Saudi Arabia
  • South Africa
  • RoMEA

Years considered for the study are as follows:

  • Historical year - 2022
  • Base year - 2023
  • Forecast period - 2024 to 2032

Key Takeaways:

  • Market Estimates & Forecast for 10 years from 2022 to 2032.
  • Annualized revenues and regional level analysis for each market segment.
  • Detailed analysis of geographical landscape with Country level analysis of major regions.
  • Competitive landscape with information on major players in the market.
  • Analysis of key business strategies and recommendations on future market approach.
  • Analysis of competitive structure of the market.
  • Demand side and supply side analysis of the market.

Table of Contents

Chapter 1. Global AIOps Platform Market Executive Summary

  • 1.1. Global AIOps Platform Market Size & Forecast (2022-2032)
  • 1.2. Regional Summary
  • 1.3. Segmental Summary
    • 1.3.1. By Component
    • 1.3.2. By Deployment
    • 1.3.3. By Organization Size
    • 1.3.4. By Application
    • 1.3.5. By Vertical
  • 1.4. Key Trends
  • 1.5. Recession Impact
  • 1.6. Analyst Recommendation & Conclusion

Chapter 2. Global AIOps Platform Market Definition and Research Assumptions

  • 2.1. Research Objective
  • 2.2. Market Definition
  • 2.3. Research Assumptions
    • 2.3.1. Inclusion & Exclusion
    • 2.3.2. Limitations
    • 2.3.3. Supply Side Analysis
      • 2.3.3.1. Availability
      • 2.3.3.2. Infrastructure
      • 2.3.3.3. Regulatory Environment
      • 2.3.3.4. Market Competition
      • 2.3.3.5. Economic Viability (Consumer's Perspective)
    • 2.3.4. Demand Side Analysis
      • 2.3.4.1. Regulatory frameworks
      • 2.3.4.2. Technological Advancements
      • 2.3.4.3. Environmental Considerations
      • 2.3.4.4. Consumer Awareness & Acceptance
  • 2.4. Estimation Methodology
  • 2.5. Years Considered for the Study
  • 2.6. Currency Conversion Rates

Chapter 3. Global AIOps Platform Market Dynamics

  • 3.1. Market Drivers
    • 3.1.1. Increasing Complexity of IT Infrastructure
    • 3.1.2. Growing Volume of Operational Data
    • 3.1.3. Advancements in AI and Machine Learning
  • 3.2. Market Challenges
    • 3.2.1. Lack of Skilled Professionals
    • 3.2.2. Data Security and Privacy Concerns
  • 3.3. Market Opportunities
    • 3.3.1. Progressive Adoption of Cloud-Based Solutions
    • 3.3.2. Integration with Smart IT Operations Solutions
    • 3.3.3. Expansion into New Verticals

Chapter 4. Global AIOps Platform Market Industry Analysis

  • 4.1. Porter's 5 Force Model
    • 4.1.1. Bargaining Power of Suppliers
    • 4.1.2. Bargaining Power of Buyers
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
    • 4.1.6. Futuristic Approach to Porter's 5 Force Model
    • 4.1.7. Porter's 5 Force Impact Analysis
  • 4.2. PESTEL Analysis
    • 4.2.1. Political
    • 4.2.2. Economical
    • 4.2.3. Social
    • 4.2.4. Technological
    • 4.2.5. Environmental
    • 4.2.6. Legal
  • 4.3. Top investment opportunity
  • 4.4. Top winning strategies
  • 4.5. Disruptive Trends
  • 4.6. Industry Expert Perspective
  • 4.7. Analyst Recommendation & Conclusion

Chapter 5. Global AIOps Platform Market Size & Forecasts by Component 2022-2032

  • 5.1. Segment Dashboard
  • 5.2. Global AIOps Platform Market: Component Revenue Trend Analysis, 2022 & 2032 (USD Billion)
    • 5.2.1. Platform
    • 5.2.2. Services

Chapter 6. Global AIOps Platform Market Size & Forecasts by Deployment 2022-2032

  • 6.1. Segment Dashboard
  • 6.2. Global AIOps Platform Market: Deployment Revenue Trend Analysis, 2022 & 2032 (USD Billion)
    • 6.2.1. Cloud
    • 6.2.2. On-premise

Chapter 7. Global AIOps Platform Market Size & Forecasts by Organization Size 2022-2032

  • 7.1. Segment Dashboard
  • 7.2. Global AIOps Platform Market: Organization Size Revenue Trend Analysis, 2022 & 2032 (USD Billion)
    • 7.2.1. Large Enterprises
    • 7.2.2. Small & Medium Enterprises

Chapter 8. Global AIOps Platform Market Size & Forecasts by Application 2022-2032

  • 8.1. Segment Dashboard
  • 8.2. Global AIOps Platform Market: Application Revenue Trend Analysis, 2022 & 2032 (USD Billion)
    • 8.2.1. Application Performance Analysis
    • 8.2.2. Infrastructure Management
    • 8.2.3. Network & Security Management
    • 8.2.4. Real-Time Analytics

Chapter 9. Global AIOps Platform Market Size & Forecasts by Vertical 2022-2032

  • 9.1. Segment Dashboard
  • 9.2. Global AIOps Platform Market: Vertical Revenue Trend Analysis, 2022 & 2032 (USD Billion)
    • 9.2.1. BFSI
    • 9.2.2. Energy & Utilities
    • 9.2.3. Government & Defense
    • 9.2.4. Healthcare & Life Sciences
    • 9.2.5. IT & Telecom
    • 9.2.6. Media & Entertainment
    • 9.2.7. Retail & eCommerce

Chapter 10. Global AIOps Platform Market Size & Forecasts by Region 2022-2032

  • 10.1. North America AIOps Platform Market
    • 10.1.1. U.S. AIOps Platform Market
      • 10.1.1.1. Component breakdown size & forecasts, 2022-2032
      • 10.1.1.2. Deployment breakdown size & forecasts, 2022-2032
      • 10.1.1.3. Organization Size breakdown size & forecasts, 2022-2032
      • 10.1.1.4. Application breakdown size & forecasts, 2022-2032
      • 10.1.1.5. Vertical breakdown size & forecasts, 2022-2032
    • 10.1.2. Canada AIOps Platform Market
  • 10.2. Europe AIOps Platform Market
    • 10.2.1. U.K. AIOps Platform Market
    • 10.2.2. Germany AIOps Platform Market
    • 10.2.3. France AIOps Platform Market
    • 10.2.4. Spain AIOps Platform Market
    • 10.2.5. Italy AIOps Platform Market
    • 10.2.6. Rest of Europe AIOps Platform Market
  • 10.3. Asia-Pacific AIOps Platform Market
    • 10.3.1. China AIOps Platform Market
    • 10.3.2. India AIOps Platform Market
    • 10.3.3. Japan AIOps Platform Market
    • 10.3.4. Australia AIOps Platform Market
    • 10.3.5. South Korea AIOps Platform Market
    • 10.3.6. Rest of Asia Pacific AIOps Platform Market
  • 10.4. Latin America AIOps Platform Market
    • 10.4.1. Brazil AIOps Platform Market
    • 10.4.2. Mexico AIOps Platform Market
    • 10.4.3. Rest of Latin America AIOps Platform Market
  • 10.5. Middle East & Africa AIOps Platform Market
    • 10.5.1. Saudi Arabia AIOps Platform Market
    • 10.5.2. South Africa AIOps Platform Market
    • 10.5.3. Rest of Middle East & Africa AIOps Platform Market

Chapter 11. Competitive Intelligence

  • 11.1. Key Company SWOT Analysis
    • 11.1.1. Amazon Web Services, Inc.
    • 11.1.2. BigPanda, Inc.
    • 11.1.3. BMC Software, Inc.
  • 11.2. Top Market Strategies
  • 11.3. Company Profiles
    • 11.3.1. Amazon Web Services, Inc.
      • 11.3.1.1. Key Information
      • 11.3.1.2. Overview
      • 11.3.1.3. Financial (Subject to Data Availability)
      • 11.3.1.4. Product Summary
      • 11.3.1.5. Market Strategies
    • 11.3.2. BigPanda, Inc.
    • 11.3.3. BMC Software, Inc.
    • 11.3.4. Broadcom Inc.
    • 11.3.5. Cisco Systems, Inc.
    • 11.3.6. CloudFabrix Software Inc.
    • 11.3.7. Datadog, Inc.
    • 11.3.8. Dynatrace, Inc.
    • 11.3.9. Google LLC
    • 11.3.10. Hewlett Packard Enterprise Company
    • 11.3.11. IBM Corporation
    • 11.3.12. Microsoft Corporation
    • 11.3.13. New Relic, Inc.
    • 11.3.14. ServiceNow, Inc.
    • 11.3.15. Tata Consultancy Services Limited

Chapter 12. Research Process

  • 12.1. Research Process
    • 12.1.1. Data Mining
    • 12.1.2. Analysis
    • 12.1.3. Market Estimation
    • 12.1.4. Validation
    • 12.1.5. Publishing
  • 12.2. Research Attributes