封面
市場調查報告書
商品編碼
1637952

2022-2032 年全球人工智慧在旅遊和旅遊市場規模研究(按組成部分、應用和區域預測) 到 2032 年,全球人工智慧在旅行和旅遊市場將達到 16590.8 億美元。

Global Artificial Intelligence in Travel and Tourism Market Size Study, by Components, by Application and Regional Forecasts 2022-2032

出版日期: | 出版商: Bizwit Research & Consulting LLP | 英文 285 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2032年,全球人工智慧旅遊市場規模將達到16,590.8億美元。

2023年,全球旅遊業人工智慧(AI)市場價值約為1099.2億美元,預計2024年至2032年複合年成長率將達到35.20%,到2032年市場規模將達到16590.8億美元。徹底改變服務的提供方式,透過分析大量資料集確保簡化營運、增強客戶體驗並做出更好的決策。憑藉其自動化和客製化服務的能力,人工智慧已成為該行業不可或缺的一部分,推動創新和營運效率。

人工智慧技術正在重塑各行業的旅遊業。預算提供者擴大利用自動化來提高成本效率,而優質旅遊服務提供者則強調人性化的服務,以提供無縫、個人化的體驗。機器學習演算法、預測分析和生成式人工智慧等先進的人工智慧功能使企業能夠透過量身定做的建議和提高營運效率來滿足客戶的期望。

旅遊業對科技的大量投資也推動了人工智慧採用的指數級成長。例如,人工智慧驅動的聊天機器人和虛擬助理正在幫助企業 24/7 管理客戶查詢,從而提高服務可靠性。這些技術使企業能夠預測客戶行為、最佳化定價策略並增強整體旅行體驗。然而,資料隱私問題以及人工智慧解決方案與現有系統的整合等挑戰可能會限制人工智慧的全面採用。

旅行和旅遊市場人工智慧的區域動態凸顯了其全球意義。由於航空公司、飯店和旅遊平台等主要參與者對人工智慧技術的採用率很高,北美地區引領了市場。歐洲緊隨其後,受益於政府鼓勵旅遊業數位轉型的措施。同時,在數位化不斷發展、旅行需求增加和人工智慧技術進步的推動下,亞太地區預計將呈現最快的成長。

目錄

第 1 章:旅行與旅遊業市場中的全球人工智慧執行摘要

  • 全球旅遊業人工智慧市場規模及預測(2022-2032)
  • 區域概要
  • 分部摘要
    • 按組件分類
    • 按申請
  • 主要趨勢
  • 經濟衰退的影響
  • 分析師推薦與結論

第 2 章:全球人工智慧在旅行和旅遊市場中的定義和研究假設

  • 研究目的
  • 市場定義
  • 研究假設
    • 包容與排除
    • 限制
    • 供給側分析
      • 可用性
      • 基礎設施
      • 監管環境
      • 市場競爭
      • 經濟可行性(消費者的角度)
    • 需求面分析
      • 監理框架
      • 技術進步
      • 環境考慮
      • 消費者意識和接受度
  • 估算方法
  • 研究涵蓋的年份
  • 貨幣兌換率

第 3 章:全球人工智慧在旅遊和旅遊業市場動態中的應用

  • 市場促進因素
    • 對自動化和個人化服務的需求不斷成長
    • 對人工智慧技術的投資不斷增加
    • 提高人工智慧應用程式的數據可用性
  • 市場挑戰
    • 資料隱私問題
    • 與遺留系統的整合問題
  • 市場機會
    • 新興市場的擴張
    • 人工智慧技術的進步
    • 越來越多採用生成式人工智慧

第 4 章:全球人工智慧在旅遊業的應用分析

  • 波特的五力模型
    • 供應商的議價能力
    • 買家的議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭競爭
    • 波特五力模型的影響分析
  • PESTEL分析
    • 政治的
    • 經濟的
    • 社會的
    • 技術性
    • 環境的
    • 合法的
  • 頂級投資機會
  • 制勝策略
  • 人工智慧應用的顛覆性趨勢
  • 分析師建議

第 5 章:全球旅遊業人工智慧市場規模及預測:按組成部分(2022-2032 年)

  • 細分儀表板
  • 全球旅行和旅遊業市場人工智慧:2022 年和 2032 年組件收入趨勢分析
    • 先進的人工智慧能力
    • 自動化工具
    • 客戶體驗增強
    • 營運效率

第 6 章:全球旅遊業人工智慧市場規模與預測:按應用分類(2022-2032 年)

  • 細分儀表板
  • 全球旅行和旅遊市場人工智慧:2022 年和 2032 年應用收入趨勢分析
    • 航空
    • 機場
    • 住宿
    • 運輸

第 7 章:全球旅遊業人工智慧市場規模及預測:按地區分類(2022-2032 年)

  • 北美洲
    • 美國
      • 組件細分(2022-2032)
      • 申請細目(2022-2032)
    • 加拿大
      • 組件細分(2022-2032)
      • 申請細目(2022-2032)
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 西班牙
    • 義大利
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
    • 亞太地區其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 南非
    • 中東和非洲其他地區

第 8 章:競爭情報

  • 重點企業SWOT分析
    • Accor
    • Airbnb
    • Booking Holdings
  • 頂級市場策略
  • 公司簡介
    • Accor
    • Airbnb
    • Booking Holdings
    • Delta Air Lines
    • Dubai Airports Company
    • easyJet
    • Expedia
    • Hopper
    • InterContinental Hotels Group
    • Marriott International
    • Turkish Airlines

第 9 章:研究過程

  • 研究方法
    • 資料探勘
    • 分析
    • 市場預測
    • 驗證
    • 出版
  • 研究屬性
簡介目錄

Global Artificial Intelligence in Travel and Tourism Market to reach USD 1659.08 billion by 2032.

The global Artificial Intelligence (AI) in Travel and Tourism Market was valued at approximately USD 109.92 billion in 2023 and is projected to experience a robust CAGR of 35.20% from 2024 to 2032, reaching a market size of USD 1659.08 billion by 2032. AI in travel and tourism is revolutionizing how services are delivered, ensuring streamlined operations, enhanced customer experiences, and better decision-making through the analysis of vast data sets. With its ability to automate and customize services, AI has become indispensable in this industry, driving innovation and operational efficiency.

AI technologies are reshaping travel operations across various sectors. Budget providers are increasingly leveraging automation for cost efficiencies, while premium travel service providers emphasize the human touch for a seamless, personalized experience. Advanced AI capabilities, such as machine learning algorithms, predictive analytics, and generative AI, are enabling businesses to meet customer expectations through tailored recommendations and improved operational efficiency.

The exponential growth in AI adoption is also fueled by significant investments in the technology across travel sectors. For example, AI-powered chatbots and virtual assistants are helping businesses manage customer inquiries 24/7, thus improving service reliability. These technologies enable businesses to forecast customer behavior, optimize pricing strategies, and enhance overall travel experiences. However, challenges like data privacy concerns and the integration of AI solutions with existing systems may limit the full-scale adoption of AI.

Regional dynamics in the AI in travel and tourism market underscore its global significance. North America leads the market due to high adoption rates of AI technologies among key players, including airlines, hotels, and travel platforms. Europe follows closely, benefiting from government initiatives to encourage digital transformation in tourism. Meanwhile, Asia-Pacific is projected to exhibit the fastest growth, driven by rising digitalization, increased travel demand, and advancements in AI technologies.

Major market players included in this report are:

  • Accor
  • Airbnb
  • Booking Holdings
  • Delta Air Lines
  • Dubai Airports Company
  • easyJet
  • Expedia
  • Hopper
  • InterContinental Hotels Group
  • Marriott International
  • Turkish Airlines
  • Sabre Corporation
  • Amadeus IT Group
  • IBM Corporation
  • Google LLC

The detailed segments and sub-segment of the market are explained below:

By Components

  • Advanced AI Capabilities
  • Automation Tools
  • Customer Experience Enhancements
  • Operational Efficiencies

By Application

  • Airlines
  • Airports
  • Lodging
  • Transportation

By Region

  • North America
    • U.S.
    • Canada
  • Europe
    • UK
    • Germany
    • France
    • Spain
    • Italy
    • Rest of Europe
  • Asia Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
    • Rest of Asia Pacific
  • Latin America
    • Brazil
    • Mexico
    • Rest of Latin America
  • Middle East & Africa
    • Saudi Arabia
    • South Africa
    • Rest of MEA

Years considered for the study are as follows:

  • Historical year - 2022
  • Base year - 2023
  • Forecast period - 2024 to 2032

Key Takeaways:

  • Market Estimates & Forecast for 10 years from 2022 to 2032.
  • Annualized revenues and regional-level analysis for each market segment.
  • Detailed analysis of the geographical landscape with country-level analysis of major regions.
  • Competitive landscape with information on major players in the market.
  • Analysis of key business strategies and recommendations on future market approaches.
  • Analysis of the competitive structure of the market.
  • Demand-side and supply-side analysis of the market.

Table of Contents

Chapter 1. Global Artificial Intelligence in Travel and Tourism Market Executive Summary

  • 1.1. Global Artificial Intelligence in Travel and Tourism Market Size & Forecast (2022-2032)
  • 1.2. Regional Summary
  • 1.3. Segmental Summary
    • 1.3.1. By Components
    • 1.3.2. By Application
  • 1.4. Key Trends
  • 1.5. Recession Impact
  • 1.6. Analyst Recommendation & Conclusion

Chapter 2. Global Artificial Intelligence in Travel and Tourism Market Definition and Research Assumptions

  • 2.1. Research Objective
  • 2.2. Market Definition
  • 2.3. Research Assumptions
    • 2.3.1. Inclusion & Exclusion
    • 2.3.2. Limitations
    • 2.3.3. Supply Side Analysis
      • 2.3.3.1. Availability
      • 2.3.3.2. Infrastructure
      • 2.3.3.3. Regulatory Environment
      • 2.3.3.4. Market Competition
      • 2.3.3.5. Economic Viability (Consumer's Perspective)
    • 2.3.4. Demand Side Analysis
      • 2.3.4.1. Regulatory Frameworks
      • 2.3.4.2. Technological Advancements
      • 2.3.4.3. Environmental Considerations
      • 2.3.4.4. Consumer Awareness & Acceptance
  • 2.4. Estimation Methodology
  • 2.5. Years Considered for the Study
  • 2.6. Currency Conversion Rates

Chapter 3. Global Artificial Intelligence in Travel and Tourism Market Dynamics

  • 3.1. Market Drivers
    • 3.1.1. Rising Demand for Automated and Personalized Services
    • 3.1.2. Growing Investments in AI Technologies
    • 3.1.3. Increased Data Availability for AI Applications
  • 3.2. Market Challenges
    • 3.2.1. Data Privacy Concerns
    • 3.2.2. Integration Issues with Legacy Systems
  • 3.3. Market Opportunities
    • 3.3.1. Expansion in Emerging Markets
    • 3.3.2. Advancements in AI Technologies
    • 3.3.3. Increasing Adoption of Generative AI

Chapter 4. Global Artificial Intelligence in Travel and Tourism Industry Analysis

  • 4.1. Porter's Five Forces Model
    • 4.1.1. Bargaining Power of Suppliers
    • 4.1.2. Bargaining Power of Buyers
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
    • 4.1.6. Impact Analysis of Porter's Five Forces Model
  • 4.2. PESTEL Analysis
    • 4.2.1. Political
    • 4.2.2. Economic
    • 4.2.3. Social
    • 4.2.4. Technological
    • 4.2.5. Environmental
    • 4.2.6. Legal
  • 4.3. Top Investment Opportunities
  • 4.4. Winning Strategies
  • 4.5. Disruptive Trends in AI Applications
  • 4.6. Analyst Recommendations

Chapter 5. Global Artificial Intelligence in Travel and Tourism Market Size & Forecasts by Components (2022-2032)

  • 5.1. Segment Dashboard
  • 5.2. Global Artificial Intelligence in Travel and Tourism Market: Component Revenue Trend Analysis, 2022 & 2032 (USD Billion)
    • 5.2.1. Advanced AI Capabilities
    • 5.2.2. Automation Tools
    • 5.2.3. Customer Experience Enhancements
    • 5.2.4. Operational Efficiencies

Chapter 6. Global Artificial Intelligence in Travel and Tourism Market Size & Forecasts by Application (2022-2032)

  • 6.1. Segment Dashboard
  • 6.2. Global Artificial Intelligence in Travel and Tourism Market: Application Revenue Trend Analysis, 2022 & 2032 (USD Billion)
    • 6.2.1. Airlines
    • 6.2.2. Airports
    • 6.2.3. Lodging
    • 6.2.4. Transportation

Chapter 7. Global Artificial Intelligence in Travel and Tourism Market Size & Forecasts by Region (2022-2032)

  • 7.1. North America
    • 7.1.1. U.S.
      • 7.1.1.1. Component Breakdown (2022-2032)
      • 7.1.1.2. Application Breakdown (2022-2032)
    • 7.1.2. Canada
      • 7.1.2.1. Component Breakdown (2022-2032)
      • 7.1.2.2. Application Breakdown (2022-2032)
  • 7.2. Europe
    • 7.2.1. UK
    • 7.2.2. Germany
    • 7.2.3. France
    • 7.2.4. Spain
    • 7.2.5. Italy
    • 7.2.6. Rest of Europe
  • 7.3. Asia Pacific
    • 7.3.1. China
    • 7.3.2. India
    • 7.3.3. Japan
    • 7.3.4. Australia
    • 7.3.5. South Korea
    • 7.3.6. Rest of Asia Pacific
  • 7.4. Latin America
    • 7.4.1. Brazil
    • 7.4.2. Mexico
    • 7.4.3. Rest of Latin America
  • 7.5. Middle East & Africa
    • 7.5.1. Saudi Arabia
    • 7.5.2. South Africa
    • 7.5.3. Rest of Middle East & Africa

Chapter 8. Competitive Intelligence

  • 8.1. Key Company SWOT Analysis
    • 8.1.1. Accor
    • 8.1.2. Airbnb
    • 8.1.3. Booking Holdings
  • 8.2. Top Market Strategies
  • 8.3. Company Profiles
    • 8.3.1. Accor
    • 8.3.2. Airbnb
    • 8.3.3. Booking Holdings
    • 8.3.4. Delta Air Lines
    • 8.3.5. Dubai Airports Company
    • 8.3.6. easyJet
    • 8.3.7. Expedia
    • 8.3.8. Hopper
    • 8.3.9. InterContinental Hotels Group
    • 8.3.10. Marriott International
    • 8.3.11. Turkish Airlines

Chapter 9. Research Process

  • 9.1. Research Methodology
    • 9.1.1. Data Mining
    • 9.1.2. Analysis
    • 9.1.3. Market Estimation
    • 9.1.4. Validation
    • 9.1.5. Publishing
  • 9.2. Research Attributes