封面
市場調查報告書
商品編碼
1639041

全球高溫 3D 列印塑膠市場規模研究,按類型(PEEK、PEI、PEKK 和 PPSU)、最終用途(汽車、航太與國防、電氣與電子)和區域預測 2022-2032

Global High Temperature 3D Printing Plastics Market Size Study, by Type (PEEK, PEI, PEKK, and PPSU), End Use (Automotive, Aerospace & Defense, Electrical & Electronics) and Regional Forecasts 2022-2032

出版日期: | 出版商: Bizwit Research & Consulting LLP | 英文 285 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

全球高溫 3D 列印塑膠市場預計將大幅成長,預計將從 2023 年的 7.9 億美元增至 2032 年的 24.4 億美元,預測期內複合年成長率高達 13.30%。高溫 3D 列印塑膠已成為需要先進材料的行業的關鍵解決方案,這些材料能夠承受極端的操作條件,同時提供卓越的性能和精度。

聚醚醚酮 (PEEK)、聚醚醯亞胺 (PEI)、聚醚酮酮 (PEKK) 和聚苯碸 (PPSU) 的日益普及凸顯了市場對高性能工程塑膠的日益關注。這些材料因其卓越的熱穩定性、機械強度和耐化學性而在航太、汽車和電子領域備受追捧。隨著製造商擴大利用積層製造技術,這些高溫塑膠正在實現輕量化、客製化和永續設計的創新解決方案。

挑戰依然存在,包括高昂的材料成本和加工高溫聚合物的複雜性。然而,3D 列印技術的進步,加上對堅固且永續材料的需求不斷成長,正在抵消這些障礙。開發具有成本效益的解決方案和整合回收聚合物的努力也為更永續的市場軌跡鋪平了道路。

從地區來看,北美和歐洲因其完善的航太和汽車行業而佔據市場主導地位,這些行業需要精密工程材料。同時,在快速工業化、電子產品需求不斷成長以及中國、日本和韓國等國家對先進製造技術投資增加的推動下,亞太地區正成為主要的成長動力。

市場的詳細細分和細分市場解釋如下:

目錄

第 1 章:全球高溫 3D 列印塑膠市場執行摘要

  • 全球高溫3D列印塑膠市場規模及預測(2022-2032)
  • 區域概要
  • 分部摘要
    • 按類型
    • 按最終用途
  • 主要趨勢
  • 經濟衰退的影響
  • 分析師推薦與結論

第 2 章:全球高溫 3D 列印塑膠市場定義與研究假設

  • 研究目的
  • 市場定義
  • 研究假設
    • 包容與排除
    • 限制
    • 供給側分析
      • 可用性
      • 基礎設施
      • 監管環境
      • 市場競爭
      • 經濟可行性(消費者的角度)
    • 需求面分析
      • 監理框架
      • 技術進步
      • 環境考慮
      • 消費者意識和接受度
  • 估算方法
  • 研究涵蓋的年份
  • 貨幣兌換率

第 3 章:全球高溫 3D 列印塑膠市場動態

  • 市場促進因素
    • 航太和汽車領域對高性能聚合物的需求不斷成長
    • 採用積層製造實現輕量化和客製化
    • 強調永續材料和設計解決方案
  • 市場挑戰
    • 材料和加工成本高
    • 處理高溫聚合物的複雜性
  • 市場機會
    • 技術進步帶來經濟高效的解決方案
    • 回收和可生物分解聚合物的整合
    • 亞太地區新興市場的高成長潛力

第 4 章:全球高溫 3D 列印塑膠市場產業分析

  • 波特的五力模型
    • 供應商的議價能力
    • 買家的議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭競爭
    • 波特五力模型的未來方法
    • 波特的五力影響分析
  • PESTEL分析
    • 政治的
    • 經濟
    • 社會的
    • 技術性
    • 環境的
    • 合法的
  • 頂級投資機會
  • 最佳制勝策略
  • 顛覆性趨勢
  • 產業專家視角
  • 分析師推薦與結論

第 5 章:全球高溫 3D 列印塑膠市場規模與預測:按類型 - 2022-2032

  • 細分儀表板
  • 全球高溫 3D 列印塑膠市場:類型收入趨勢分析,2022 年和 2032 年(百萬美元/十億美元)
    • 窺視
    • 聚乙烯亞胺
    • 聚醚酮酮
    • 聚苯硫醚

第 6 章:全球高溫 3D 列印塑膠市場規模與預測:依最終用途分類 - 2022-2032

  • 細分儀表板
  • 全球高溫 3D 列印塑膠市場:2022 年和 2032 年最終用途收入趨勢分析(百萬美元/十億美元)
    • 汽車
    • 航太與國防
    • 電氣與電子

第 7 章:全球高溫 3D 列印塑膠市場規模與預測:按地區 - 2022-2032

  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 西班牙
    • 義大利
    • 歐洲其他地區
  • 亞太
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
    • 亞太其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 南非
    • 中東和非洲其他地區

第 8 章:競爭情報

  • 重點企業SWOT分析
    • Arkema SA
    • Victrex plc
    • Solvay SA
  • 頂級市場策略
  • 公司簡介
    • Arkema SA
      • 關鍵訊息
      • 概述
      • 財務(視數據可用性而定)
      • 產品概要
      • 市場策略
    • Victrex plc
    • Solvay SA
    • SABIC
    • Evonik Industries AG
    • BASF SE
    • DuPont de Nemours, Inc.
    • Oxford Performance Materials
    • Ensinger GmbH
    • Stratasys Ltd.
    • 3D Systems Corporation
    • Ultimaker BV
    • Markforged Inc.
    • CRP Technology Srl
    • Proto Labs, Inc.

第 9 章:研究過程

  • 研究過程
    • 資料探勘
    • 分析
    • 市場預測
    • 驗證
    • 出版
  • 研究屬性
簡介目錄

The Global High Temperature 3D Printing Plastics Market is poised to grow significantly, reaching an estimated USD 2.44 billion by 2032 from USD 0.79 billion in 2023, registering a robust CAGR of 13.30% over the forecast period. High-temperature 3D printing plastics have emerged as a critical solution for industries demanding advanced materials capable of withstanding extreme operating conditions while delivering superior performance and precision.

The rising adoption of polyetheretherketone (PEEK), polyetherimide (PEI), polyetherketoneketone (PEKK), and polyphenylsulfone (PPSU) highlights the market's growing focus on high-performance engineering plastics. These materials are highly sought after in the aerospace, automotive, and electronics sectors for their exceptional thermal stability, mechanical strength, and chemical resistance. With manufacturers increasingly leveraging additive manufacturing technologies, these high-temperature plastics are enabling innovative solutions in lightweighting, customization, and sustainable design.

Challenges persist, including high material costs and the complexity of processing high-temperature polymers. However, advancements in 3D printing technologies, coupled with increasing demand for robust and sustainable materials, are offsetting these hurdles. Efforts to develop cost-effective solutions and integrate recycled polymers are also paving the way for a more sustainable market trajectory.

Regionally, North America and Europe dominate the market due to their well-established aerospace and automotive sectors, which demand precision-engineered materials. Meanwhile, the Asia-Pacific region is emerging as a key growth driver, propelled by rapid industrialization, burgeoning demand for electronics, and increased investments in advanced manufacturing technologies across countries such as China, Japan, and South Korea.

Major market players included in this report are:

  • Arkema S.A.
  • Victrex plc
  • Solvay S.A.
  • SABIC
  • Evonik Industries AG
  • BASF SE
  • DuPont de Nemours, Inc.
  • Oxford Performance Materials
  • Ensinger GmbH
  • Stratasys Ltd.
  • 3D Systems Corporation
  • Ultimaker BV
  • Markforged Inc.
  • CRP Technology Srl
  • Proto Labs, Inc.

The detailed segments and sub-segments of the market are explained below:

By Type:

  • PEEK
  • PEI
  • PEKK
  • PPSU

By End Use:

  • Automotive
  • Aerospace & Defense
  • Electrical & Electronics

By Region:

North America:

  • U.S.
  • Canada

Europe:

  • UK
  • Germany
  • France
  • Spain
  • Italy
  • Rest of Europe

Asia-Pacific:

  • China
  • India
  • Japan
  • Australia
  • South Korea
  • Rest of Asia-Pacific

Latin America:

  • Brazil
  • Mexico
  • Rest of Latin America

Middle East & Africa:

  • Saudi Arabia
  • South Africa
  • Rest of Middle East & Africa

Years considered for the study are as follows:

  • Historical Year: 2022
  • Base Year: 2023
  • Forecast Period: 2024 to 2032

Key Takeaways:

  • Comprehensive market estimates and forecasts over a 10-year period.
  • Insightful analysis of regional and segment-specific trends.
  • Examination of competitive strategies and market positioning of key players.
  • Recommendations for stakeholders to leverage emerging opportunities effectively.
  • In-depth understanding of market dynamics, including drivers, challenges, and opportunities.

Table of Contents

Chapter 1. Global High Temperature 3D Printing Plastics Market Executive Summary

  • 1.1. Global High Temperature 3D Printing Plastics Market Size & Forecast (2022-2032)
  • 1.2. Regional Summary
  • 1.3. Segmental Summary
    • 1.3.1. By Type
    • 1.3.2. By End Use
  • 1.4. Key Trends
  • 1.5. Recession Impact
  • 1.6. Analyst Recommendation & Conclusion

Chapter 2. Global High Temperature 3D Printing Plastics Market Definition and Research Assumptions

  • 2.1. Research Objective
  • 2.2. Market Definition
  • 2.3. Research Assumptions
    • 2.3.1. Inclusion & Exclusion
    • 2.3.2. Limitations
    • 2.3.3. Supply Side Analysis
      • 2.3.3.1. Availability
      • 2.3.3.2. Infrastructure
      • 2.3.3.3. Regulatory Environment
      • 2.3.3.4. Market Competition
      • 2.3.3.5. Economic Viability (Consumer's Perspective)
    • 2.3.4. Demand Side Analysis
      • 2.3.4.1. Regulatory Frameworks
      • 2.3.4.2. Technological Advancements
      • 2.3.4.3. Environmental Considerations
      • 2.3.4.4. Consumer Awareness & Acceptance
  • 2.4. Estimation Methodology
  • 2.5. Years Considered for the Study
  • 2.6. Currency Conversion Rates

Chapter 3. Global High Temperature 3D Printing Plastics Market Dynamics

  • 3.1. Market Drivers
    • 3.1.1. Growing Demand for High-Performance Polymers in Aerospace and Automotive
    • 3.1.2. Adoption of Additive Manufacturing for Lightweight and Customization
    • 3.1.3. Emphasis on Sustainable Materials and Design Solutions
  • 3.2. Market Challenges
    • 3.2.1. High Material and Processing Costs
    • 3.2.2. Complexity in Handling High-Temperature Polymers
  • 3.3. Market Opportunities
    • 3.3.1. Technological Advancements for Cost-Effective Solutions
    • 3.3.2. Integration of Recycled and Biodegradable Polymers
    • 3.3.3. High Growth Potential in Emerging APAC Markets

Chapter 4. Global High Temperature 3D Printing Plastics Market Industry Analysis

  • 4.1. Porter's 5 Force Model
    • 4.1.1. Bargaining Power of Suppliers
    • 4.1.2. Bargaining Power of Buyers
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
    • 4.1.6. Futuristic Approach to Porter's 5 Force Model
    • 4.1.7. Porter's 5 Force Impact Analysis
  • 4.2. PESTEL Analysis
    • 4.2.1. Political
    • 4.2.2. Economical
    • 4.2.3. Social
    • 4.2.4. Technological
    • 4.2.5. Environmental
    • 4.2.6. Legal
  • 4.3. Top Investment Opportunity
  • 4.4. Top Winning Strategies
  • 4.5. Disruptive Trends
  • 4.6. Industry Expert Perspective
  • 4.7. Analyst Recommendation & Conclusion

Chapter 5. Global High Temperature 3D Printing Plastics Market Size & Forecasts by Type 2022-2032

  • 5.1. Segment Dashboard
  • 5.2. Global High Temperature 3D Printing Plastics Market: Type Revenue Trend Analysis, 2022 & 2032 (USD Million/Billion)
    • 5.2.1. PEEK
    • 5.2.2. PEI
    • 5.2.3. PEKK
    • 5.2.4. PPSU

Chapter 6. Global High Temperature 3D Printing Plastics Market Size & Forecasts by End Use 2022-2032

  • 6.1. Segment Dashboard
  • 6.2. Global High Temperature 3D Printing Plastics Market: End Use Revenue Trend Analysis, 2022 & 2032 (USD Million/Billion)
    • 6.2.1. Automotive
    • 6.2.2. Aerospace & Defense
    • 6.2.3. Electrical & Electronics

Chapter 7. Global High Temperature 3D Printing Plastics Market Size & Forecasts by Region 2022-2032

  • 7.1. North America High Temperature 3D Printing Plastics Market
    • 7.1.1. U.S. High Temperature 3D Printing Plastics Market
      • 7.1.1.1. Type breakdown size & forecasts, 2022-2032
      • 7.1.1.2. End Use breakdown size & forecasts, 2022-2032
    • 7.1.2. Canada High Temperature 3D Printing Plastics Market
      • 7.1.2.1. Type breakdown size & forecasts, 2022-2032
      • 7.1.2.2. End Use breakdown size & forecasts, 2022-2032
  • 7.2. Europe High Temperature 3D Printing Plastics Market
    • 7.2.1. UK High Temperature 3D Printing Plastics Market
    • 7.2.2. Germany High Temperature 3D Printing Plastics Market
    • 7.2.3. France High Temperature 3D Printing Plastics Market
    • 7.2.4. Spain High Temperature 3D Printing Plastics Market
    • 7.2.5. Italy High Temperature 3D Printing Plastics Market
    • 7.2.6. Rest of Europe High Temperature 3D Printing Plastics Market
  • 7.3. Asia-Pacific High Temperature 3D Printing Plastics Market
    • 7.3.1. China High Temperature 3D Printing Plastics Market
    • 7.3.2. India High Temperature 3D Printing Plastics Market
    • 7.3.3. Japan High Temperature 3D Printing Plastics Market
    • 7.3.4. Australia High Temperature 3D Printing Plastics Market
    • 7.3.5. South Korea High Temperature 3D Printing Plastics Market
    • 7.3.6. Rest of Asia-Pacific High Temperature 3D Printing Plastics Market
  • 7.4. Latin America High Temperature 3D Printing Plastics Market
    • 7.4.1. Brazil High Temperature 3D Printing Plastics Market
    • 7.4.2. Mexico High Temperature 3D Printing Plastics Market
    • 7.4.3. Rest of Latin America High Temperature 3D Printing Plastics Market
  • 7.5. Middle East & Africa High Temperature 3D Printing Plastics Market
    • 7.5.1. Saudi Arabia High Temperature 3D Printing Plastics Market
    • 7.5.2. South Africa High Temperature 3D Printing Plastics Market
    • 7.5.3. Rest of Middle East & Africa High Temperature 3D Printing Plastics Market

Chapter 8. Competitive Intelligence

  • 8.1. Key Company SWOT Analysis
    • 8.1.1. Arkema S.A.
    • 8.1.2. Victrex plc
    • 8.1.3. Solvay S.A.
  • 8.2. Top Market Strategies
  • 8.3. Company Profiles
    • 8.3.1. Arkema S.A.
      • 8.3.1.1. Key Information
      • 8.3.1.2. Overview
      • 8.3.1.3. Financial (Subject to Data Availability)
      • 8.3.1.4. Product Summary
      • 8.3.1.5. Market Strategies
    • 8.3.2. Victrex plc
    • 8.3.3. Solvay S.A.
    • 8.3.4. SABIC
    • 8.3.5. Evonik Industries AG
    • 8.3.6. BASF SE
    • 8.3.7. DuPont de Nemours, Inc.
    • 8.3.8. Oxford Performance Materials
    • 8.3.9. Ensinger GmbH
    • 8.3.10. Stratasys Ltd.
    • 8.3.11. 3D Systems Corporation
    • 8.3.12. Ultimaker BV
    • 8.3.13. Markforged Inc.
    • 8.3.14. CRP Technology Srl
    • 8.3.15. Proto Labs, Inc.

Chapter 9. Research Process

  • 9.1. Research Process
    • 9.1.1. Data Mining
    • 9.1.2. Analysis
    • 9.1.3. Market Estimation
    • 9.1.4. Validation
    • 9.1.5. Publishing
  • 9.2. Research Attributes