全球變電站自動化市場 - 2023-2030年
市場調查報告書
商品編碼
1290441

全球變電站自動化市場 - 2023-2030年

Global Substation Automation Market - 2023-2030

出版日期: | 出版商: DataM Intelligence | 英文 234 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

市場概況

全球變電站自動化市場在2022年達到410億美元,預計到2030年將達到670億美元,在預測期內(2023-2030年)以6.5%的複合成長率成長。

近年來,全球變電站自動化市場一直在經歷穩定的成長,這是因為對高效和可靠的配電系統的需求不斷增加。變電站自動化是指整合各種智慧電子設備(IED)和通訊網路,實現變電站控制和監測的自動化。這項技術使電力公司和電網營運商能夠提高營運效率,降低維護成本,並提高電網的可靠性。

北美洲約佔全球市場佔有率的38.3%,預計在預測期內將以顯著的複合年成長率成長。然而,亞太地區正在成為全球變電站市場中成長最快的地區,2022年將佔據全球市場約32.4%的佔有率。

市場動態

全球對智慧電網基礎設施的投資不斷增加

全球向可再生能源的過渡,需要將這些能源整合到現有的電網中。變電站自動化通過提供必要的監測、控制和協調能力,促進了可再生能源的整合。自動化技術能夠有效地管理分佈式發電、電網穩定性和間歇性可再生能源的順利整合。

智慧電網的發展在全球範圍內得到了主要的資助。例如,一個名為加拿大自然資源部的政府組織在2020年5月投資了1000萬美元,用於建設新一代的智慧電網項目。該電網項目鼓勵建設技術來整合新的清潔能源和可再生能源,同時保持現有系統的可靠性和穩定性。

安裝和維護成本高

實施變電站自動化系統需要具備設計、安裝和維護這些複雜系統的知識和專長的熟練人員。培訓員工或僱用專業人員的成本很高,特別是在市場上缺乏熟練的專業人員的情況下。訓練有素的人員有限,會減慢變電站自動化的採用和成長。

變電站自動化系統需要定期維護和升級,以確保其順利運行和使用壽命。持續維護的成本,包括設備檢查、軟體更新和故障排除,可能是巨大的。各組織需要為維護活動分配資源,這可能會使預算緊張,特別是對於財務能力有限的小公司或公用事業公司。

COVID-19影響分析

COVID-19大流行病的封鎖也促使了電力需求的大規模下降,因為許多運輸和工業企業關閉或縮減規模以遵守政府的限制。電力需求的減少影響了公用事業公司的收入。因此,公用事業公司削減了資本支出,取消了新的投資,減少了對變電站自動化的需求。

COVID-19大流行病的短期影響對變電站自動化市場來說是比較嚴重的。各國政府正在大力投資於能源基礎設施,作為廣泛的經濟刺激措施的一部分,以啟動成長並從大流行病造成的經濟衰退中恢復。隨著大流行病的影響逐漸消失,對變電站自動化技術的需求將增加,預計市場將在未來幾年逐步成長。

俄烏戰爭影響分析

衝突促使的地緣政治緊張局勢會給市場帶來不確定因素。大型基礎設施項目的投資,如變電站自動化,可能會受到地緣政治考慮和聯盟轉變的影響。這可能促使投資重點的延遲或改變,有可能影響該地區變電站自動化市場的成長。

人工智慧影響分析

變電站自動化系統很容易受到網路威脅,而人工智慧在加強網路安全方面發揮著關鍵作用。人工智慧算法可以檢測異常情況,監測網路流量,並即時識別潛在的網路攻擊,使公用事業部門能夠迅速作出反應並減輕風險。人工智慧通過分析消費模式、需求預測和市場趨勢實現智慧能源管理。公用事業單位可以利用人工智慧最佳化能源分配,安排減載或需量反應計劃,並提高能源效率。

目錄

第一章:方法和範圍

  • 研究方法
  • 報告的研究目標和範圍

第二章:定義和概述

第三章:執行摘要

  • 按組件分類的市場分析
  • 按安裝方式分類的市場簡述
  • 按通訊分類的市場分析
  • 按終端用戶分類的市場分析
  • 按地區分類的市場分析

第4章:動態變化

  • 影響因素
    • 驅動因素
      • 全球對智慧電網基礎設施的投資不斷增加
    • 限制因素
      • 安裝和維護成本高
    • 機會
      • 可再生能源在電網中的整合和管理
    • 影響分析

第五章:行業分析

  • 波特的五力分析
  • 供應鏈分析
  • 價格分析
  • 監管分析

第六章:COVID-19分析

  • COVID-19的分析
    • COVID之前的情況
    • COVID期間的情況
    • COVID之後的情況
  • COVID-19期間的定價動態
  • 需求-供應譜系
  • 大流行期間與市場有關的政府計劃
  • 製造商的戰略計劃
  • 結語

第7章:按組件分類

  • 重合閘控制器
  • 可編程邏輯控制器(PLC)
  • 電容器組控制器
  • 數位轉換器
  • SCADA
  • 負載分接控制器
  • 數位繼電器
  • 其他

第8章:按安裝方式

  • 新安裝
  • 改造安裝
  • 其他

第九章:按通訊方式

  • 以太網通訊
  • 電力線通訊
  • 銅線通訊
  • 光纖通訊

第十章:按終端用戶分類

  • 公用事業
  • 金屬加工
  • 石油和天然氣
  • 採礦業
  • 運輸業
  • 其他

第十一章:按地區分類

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 俄羅斯
    • 歐洲其他地區
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳大利亞
    • 亞太其他地區
  • 中東和非洲

第十二章:競爭格局

  • 競爭格局
  • 市場定位/佔有率分析
  • 合併和收購分析

第十三章:公司簡介

  • Hitachi Energy Ltd.
    • 公司概述
    • 產品組合和描述
    • 財務概況
    • 主要發展情況
  • Siemens Energy
  • General Electric
  • Cisco Systems, Inc.
  • Schneider Electric
  • Eaton
  • NovaTech, LLC.
  • Honeywell International Inc.
  • CG Power and Industrial Solutions Ltd
  • Schweitzer Engineering Laboratories, Inc.

第十四章:附錄

簡介目錄
Product Code: EP5408

Market Overview

Global Substation Automation Market reached US$ 41 billion in 2022 and is expected to reach US$ 67 billion by 2030, growing with a CAGR of 6.5% during the forecast period (2023-2030).

The Global Substation Automation Market has been experiencing steady growth in recent years, driven by the increasing need for efficient and reliable power distribution systems. Substation automation refers to integrating various intelligent electronic devices (IEDs) and communication networks to automate the control and monitoring of power substations. This technology enables utilities and grid operators to enhance operational efficiency, reduce maintenance costs and improve grid reliability.

North America accounts for approximately 38.3% of the global market share and is expected to grow at a significant CAGR during the forecast period. However, Asia-Pacific is emerging as the fastest-growing region in the global substation market, which hold around 32.4% of the worldwide market share in 2022.

Market Dynamics

Increasing Global Investment in Smart Grid Infrastructure

The global transition towards renewable energy sources necessitates the integration of these sources into the existing power grid. Substation automation facilitates the integration of renewable energy by providing the necessary monitoring, control and coordination capabilities. Automation technologies enable effective management of distributed generation, grid stability and the smooth integration of intermittent renewable sources.

The development of smart grids is receiving major financing on a global scale. For instance, a government organization called Natural Resource Canada invested $10 million in a project to build a new generation of smart grids in May 2020. The grid project encourages the construction of technologies to integrate new clean energy sources and renewable energy sources while maintaining the dependability and stability of existing systems.

High Installation and Maintenance Costs

Implementing substation automation systems requires skilled personnel with the knowledge and expertise to design, install and maintain these complex systems. Training employees or hiring specialized personnel can be costly, particularly if there is a shortage of skilled professionals in the market. The limited availability of trained personnel can slow down the adoption and growth of substation automation.

Substation automation systems require regular maintenance and upgrades to ensure their smooth operation and longevity. The costs of ongoing maintenance, including equipment inspection, software updates and troubleshooting, can be significant. Organizations need to allocate resources for maintenance activities, which can strain budgets, particularly for smaller companies or utilities with limited financial capabilities.

COVID-19 Impact Analysis

The COVID-19 pandemic lockdowns also led to a massive depression in electricity demand, as many transportation and industrial enterprises closed or scaled back to comply with government restrictions. The reduced electricity demand impacted the revenues of utility companies. Therefore, utility companies cut back on capital expenditure and canceled new investments, reducing demand for substation automation.

The short-term impact of the COVID-19 pandemic has been relatively severe for the substation automation market. Governments are investing significantly in energy infrastructure as a part of a wide-ranging economic stimulus to kickstart growth and recover from the economic downturn caused by the pandemic. As the effects of the pandemic gradually wear away, demand for substation automation technologies will increase and the market is expected to grow gradually in the coming years.

Russia-Ukraine War Impact Analysis

The geopolitical tensions resulting from the conflict can introduce uncertainties in the market. Investments in large-scale infrastructure projects, such as substation automation, may be impacted by geopolitical considerations and shifting alliances. This can lead to delays or changes in investment priorities, potentially affecting the growth of the substation automation market in the region.

Artificial Intelligence Impact Analysis

Substation automation systems are vulnerable to cyber threats and AI plays a crucial role in strengthening cybersecurity. AI algorithms can detect anomalies, monitor network traffic and identify potential cyber-attacks in real-time, enabling utilities to respond swiftly and mitigate risks. AI enables intelligent energy management by analyzing consumption patterns, demand forecasts and market trends. Utilities can use AI to optimize energy distribution, schedule load shedding or demand response programs and enhance energy efficiency.

Segment Analysis

The Global Substation Automation Market is segmented based on component, installation, communication, end-user and region.

The Growing Power Infrastructure and Greenfield Projects

Greenfield projects involve the construction of new substations in areas where there is no existing power infrastructure. These projects are typically undertaken to supply electricity to newly developed areas, industrial zones or renewable energy installations.

During the planning and construction phase of these new substations, utilities and project developers can incorporate substation automation systems from the beginning, ensuring efficient and advanced control and monitoring capabilities.

Substation automation systems offer numerous benefits in terms of operational efficiency. They enable remote monitoring, automated control and advanced analytics, leading to optimized power flow, efficient fault detection and faster response to grid events. Utilities recognize the potential for improved operational efficiency in new substations by implementing automation systems, which drives the demand for substation automation in the new installation segment.

Geographical Analysis

Dominance of North America in the Global Substation Automation Market and Key Initiatives for Grid Resilience

Moreover, several industrial enterprises are growing their substations through new development and collaboration ecosystems, leveraging the market's expansion. For example, In 2020, BASF Agriculture Products North America and its herbicide plant in Beaumont, Texas, automated and enlarged its onsite electrical supply, distribution and c and control systems.

North America is home to several prominent engineering firms that cater to automation systems due to the culture of high-tech innovation and ease of business. The U.S. is generally the first to commercialize new emerging technologies. North America will retain a leading position in the global substation automation market in the coming years. The U.S. is a potential player in North American substation automation market, which accounts for approximately 83.4% of the regional market share and is expected to grow at the highest CAGR during the forecasted period in the region.

Competitive Landscape

The major global players include: Hitachi Energy Ltd., Siemens Energy, General Electric, Cisco Systems, Inc., Schneider Electric, Eaton, NovaTech, LLC., Honeywell International Inc., CG Power and Industrial Solutions Ltd and Schweitzer Engineering Laboratories, Inc.

Why Purchase the Report?

  • To visualize the Global Substation Automation Market segmentation based on component, installation, communication, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous substation automation market level data points with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The Global Substation Automation Market Report Would Provide Approximately 69 Tables, 74 Figures And 234 pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Market Snippet by Component
  • 3.2. Market Snippet by Installation
  • 3.3. Market Snippet by Communication
  • 3.4. Market Snippet by End-User
  • 3.5. Market Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Increasing Global Investment in Smart Grid Infrastructure
    • 4.1.2. Restraints
      • 4.1.2.1. High Installation and Maintenance Costs
    • 4.1.3. Opportunity
      • 4.1.3.1. Integration and Management of Renewable Energy Sources Within the Power Grid
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Forces Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Component

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 7.1.2. Market Attractiveness Index, By Component
  • 7.2. Reclose Controller*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Programmable Logic Controller (PLC)
  • 7.4. Capacitor Bank Controller
  • 7.5. Digital Transducer
  • 7.6. SCADA
  • 7.7. Load Tap Controller
  • 7.8. Digital Relay
  • 7.9. Others

8. By Installation

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 8.1.2. Market Attractiveness Index, By Installation
  • 8.2. New Installation*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Retrofit Installation
  • 8.4. Others

9. By Communication

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Communication
    • 9.1.2. Market Attractiveness Index, By Communication
  • 9.2. Ethernet Communication*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Power Line Communication
  • 9.4. Copper Wire Communication
  • 9.5. Optical Fiber Communication

10. By End-User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2. Market Attractiveness Index, By End-User
  • 10.2. Utilities*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Metals Processing
  • 10.4. Oil & Gas
  • 10.5. Mining
  • 10.6. Transportation
  • 10.7. Others

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Communication
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. The U.S.
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Communication
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. The UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Russia
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Communication
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Communication
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Communication
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Hitachi Energy Ltd.*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Siemens Energy
  • 13.3. General Electric
  • 13.4. Cisco Systems, Inc.
  • 13.5. Schneider Electric
  • 13.6. Eaton
  • 13.7. NovaTech, LLC.
  • 13.8. Honeywell International Inc.
  • 13.9. CG Power and Industrial Solutions Ltd
  • 13.10. Schweitzer Engineering Laboratories, Inc.

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us