封面
市場調查報告書
商品編碼
1304487

全球質子交換膜燃料電池市場 - 2023-2030

Global Proton-Exchange Membrane Fuel Cell Market - 2023-2030

出版日期: | 出版商: DataM Intelligence | 英文 200 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

市場概述

全球質子交換膜燃料電池市場規模在2022年達到35億美元,預計到2030年將達到123億美元,在2023-2030年期間的年複合成長率為17.1%。

影響全球質子交換膜燃料電池(PEMFC)業務的主要因素之一是對非常規能源的需求不斷成長。將氫作為燃料電池的燃料是促進其快速發展的因素之一。 PEMFC是一種永續燃料,因為燃料電池的唯一副產品是水。世界各國政府已經實施了鼓勵使用PEMFC的激勵計劃。對於試圖降低碳排放的國家來說,這是一個可行的解決方案,因為它是傳統燃料的永續替代品。

此外,美國和其他發達經濟體越來越重視減少排放,技術趨向於更清潔的技術,這將促進市場成長。日本是亞太地區最大的質子交換膜燃料電池消費國之一,該國啟動了一項名為"Ene農場計劃"的項目。根據該計劃,政府將為微型熱電聯產應用建立燃料電池系統,到2020年將達到140萬套,到2030年將達到530萬套。

市場動態

對清潔能源替代品的需求不斷成長

推動清潔能源替代品需求的關鍵因素之一是減少溫室氣體排放的迫切需要。煤炭、石油和天然氣等傳統能源是二氧化碳和其他污染物的主要排放源。

燃燒這些化石燃料發電和運輸會損害空氣品質,加劇氣候變化。因此,各國政府、組織和個人都在積極尋求更清潔的替代能源,以幫助緩解這些環境挑戰。

世界各國都認知到投資包括PEMFC在內的清潔能源替代品對於解決環境問題和實現氣候目標的重要性。許多國家的政府已經實施了相關政策和激勵措施來支持這些技術的採用和部署。這些措施包括財政激勵、稅收減免、研究補助和補貼,以鼓勵開發和使用清潔能源解決方案。

生產和整合成本高

催化劑材料是導致PEMFC成本居高不下的主要原因。此外,質子交換膜、雙極板和氣體擴散層等其他組件也增加了總成本。

這些組件需要專門的製造程序和材料,這可能會增加燃料電池系統的生產成本。簡化製造程序和為這些組件尋找具有成本效益的材料是降低整體系統成本的持續研究領域。

質子交換膜通常由聚合物材料製成,是另一個重要的成本驅動因素。這些膜必須具有高質子傳導性和化學穩定性,通常需要昂貴的材料。目前進行開發工作,以提高質子交換膜的性能並降低其成本。

COVID-19 影響分析

由於為遏制病毒傳播而實施的封鎖措施、旅行限制和工廠關閉,PEMFC及其組件的全球供應鏈受到嚴重干擾。這種中斷導致生產延遲、原料供應減少以及燃料電池製造商的交付週期延長。因此,PEMFC市場經歷了供應鏈挑戰,在滿足需求方面面臨困難。

目錄

第1章研究方法和範圍

  • 研究方法
  • 研究目的和報告範圍

第2章:定義和概述

第3章:執行摘要

  • 按類型分類
  • 按組件分類
  • 按應用分類
  • 按最終用戶分類
  • 按地區分類

第4章動態

  • 影響因素
    • 驅動因素
      • 對清潔能源替代品需求的成長
    • 限制因素
      • 生產和整合成本高
    • 機會
    • 影響分析

第5章行業分析

  • 波特五力分析法
  • 供應鏈分析
  • 定價分析
  • 法規分析

第6章:COVID-19分析

  • COVID-19分析
    • COVID之前的情景
    • COVID期間的情景
    • COVID之後的情景
  • COVID-19 期間的定價動態
  • 供需關係
  • 大流行期間與市場相關的政府計劃
  • 製造商的戰略計劃
  • 結論

第7章:按類型

  • 平面型
  • 管狀

第8章:按組件分類

  • 膜電極組件(MEA)
  • 電池組
    • 小於5W的電池組
    • 5W 至100W 電池組
    • 100W至1kW電池組
    • 1kW至10kW電池組
    • 用於無人機、UAV和機器人的PEM燃料電池
  • 模組
    • 低溫質子交換膜燃料電池(60-80°C)
    • 高溫質子交換膜燃料電池(110-180°C)

第9章:按應用分類

  • 固定應用
  • 運輸
  • 攜帶式

第10章:按終端用戶分類

  • 發電
  • 住宅和商業
  • 軍用
  • 零售業
  • 資料中心
  • 熱電聯產
  • 其他

第11章:按地區分類

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 法國
    • 俄羅斯
    • 歐洲其他地區
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美其他地區
  • 亞太地區
    • 中國
    • 日本
    • 日本
    • 澳洲
    • 亞太其他地區
  • 中東和非洲
    • 按類型分類的M市場規模分析和YY成長分析(%)

第12章:競爭格局

  • 競爭格局
  • 市場定位/佔有率分析
  • 合併與收購分析

第13章:公司簡介

  • Nedstack Fuel Cell Technology BV
    • 公司概況
    • 產品組合和描述
    • 財務概況
    • 主要發展
  • AVL
  • PowerCell
  • 3M
  • Ballard Power Systems
  • PLUG POWER INC
  • Showa Denko KK (SDK)
  • WL Gore & Associates, Inc
  • Bing Energy Inc
  • Freudenberg SE

第14章:附錄

簡介目錄
Product Code: EP2849

Market Overview

The Global Proton-Exchange Membrane Fuel Cell Market reached US$ 3.5 billion in 2022 and is expected to reach US$ 12.3 billion by 2030, growing with a CAGR of 17.1% during the forecast period 2023-2030.

One of the main factors affecting the Global Proton-Exchange Membrane Fuel Cell (PEMFC) business is the rising need for unconventional energy sources. The use of hydrogen as a fuel for fuel cells is one of the factors contributing to their rapid expansion. PEMFC is a sustainable fuel because the fuel cell's only byproduct is water. Governments worldwide have implemented incentive programs to encourage the use of PEMFC. It is a feasible solution for nations trying to lower carbon emissions because it is a sustainable substitute for traditional fuels.

Additionally, the U.S. and other developed economies are placing increasing emphasis on reducing emissions, and there is a tendency for technology to move in favor of cleaner technologies, which will promote market growth. Japan is one of the largest consumers of proton-exchange membrane fuel cells in the Asia-Pacific and the country initiated a program named "Ene farm program." Under this program, the government will establish fuel cell systems for micro CHP applications, with 1.4 Million Units by 2020 and 5.3 Million Units by 2030.

Market Dynamics

Rising Demand For Clean Energy Alternatives

One of the key factors driving the demand for clean energy alternatives is the urgent need to reduce greenhouse gas emissions. Traditional energy sources, such as coal, oil and natural gas, are major contributors to carbon dioxide emissions and other pollutants.

The combustion of these fossil fuels for electricity generation and transportation harms air quality and exacerbates climate change. As a result, governments, organizations and individuals are actively seeking cleaner alternatives to help mitigate these environmental challenges.

Countries worldwide recognize the importance of investing in clean energy alternatives, including PEMFCs, to address environmental concerns and achieve their climate goals. Many governments have implemented policies and incentives to support the adoption and deployment of these technologies. These initiatives include financial incentives, tax breaks, research grants and subsidies to encourage the development and use of clean energy solutions.

High Production And Integration Cost

Catalyst materials are a major component adding to the high cost of PEMFCs. Furthermore, other components in, such as the proton-exchange membrane, bipolar plates and gas diffusion layers, contribute to the overall cost.

These components require specialized manufacturing processes and materials, which can add to the production cost of the fuel cell system. Streamlining manufacturing processes and finding cost-effective materials for these components are areas of ongoing research to reduce the overall system cost.

The proton-exchange membrane, typically made of a polymer material, is another significant cost driver. These membranes must have high proton conductivity and be chemically stable, often requiring expensive materials. Development efforts are underway to enhance the performance and reduce the cost of proton-exchange membranes.

COVID-19 Impact Analysis

The global supply chains for PEMFCs and their components were severely disrupted due to lockdown measures, travel restrictions and factory closures implemented to curb the spread of the virus. The disruption resulted in production delays, reduced availability of raw materials and increased lead times for fuel cell manufacturers. As a result, the PEMFC market experienced supply chain challenges and faced difficulties in meeting demand.

Segment Analysis

The Global Proton-Exchange Membrane Fuel Cell Market is segmented based on type, component, application, end-user and region.

Rising Investments In Fuel Cell Electric Vehicles (FCEVS) In Developing Countries

Transportation application holds most of the Global Proton-Exchange Membrane Fuel Cell Market share. Various developing countries are investing in fuel-cell electric vehicles thus boosting the transportation segment in the PEMFC market. For instance, in 2022, Along with other officials, Union Minister for Road Transport and Highways Shri Nitin Gadkari unveiled the Toyota Mirai, the world's most technologically advanced green hydrogen fuel cell electric vehicle (FCEV).

The world's most advanced fuel cell electric vehicle (FCEV), the Toyota Mirai, which runs on hydrogen, is being studied and evaluated on Indian roads and environmental circumstances as part of a pilot project being carried out by Toyota Kirloskar Motor Pvt Ltd and the International Centre for Automotive Technology (ICAT). This pioneering project in India intends to develop an ecosystem based on green hydrogen by raising awareness of the special benefits of green hydrogen and FCEV technology.

Geographical Analysis

Europe's Companies Growing Investments And Collaboration To Boost The Clean Energy Solutions

European companies and organizations are actively collaborating to accelerate the development and commercialization of PEMFCs. Partnerships between fuel cell manufacturers, automotive companies, energy providers and research institutions foster knowledge exchange, technological advancements and market expansion.

For instance, on March 30th, 2023, The HyEkoTank project was launched in Lysaker, Norway, by eight project partners from three European nations (Norway, Sweden and the Netherlands), who also discussed the procedures the consortium will follow during the project's implementation period as well as the work to be done in the upcoming period. A project with a 36-month lifespan, the HyEkoTank is supported by the European Union through the Horizon Europe program.

The HyEkoTank consortium has recognized a need for efficient hydrogen PEM fuel cell technologies for maritime applications. The collaboration was established to combine considerable expertise and understanding in fuel cells, hydrogen and the marine sector and to offer a solution to refit fleets cost-effectively to cut their GHG emissions drastically.

Competitive Landscape

The major global players include: Nedstack Fuel Cell Technology BV, AVL, PowerCell, 3M, Ballard Power Systems, PLUG POWER INC., Showa Denko K.K (SDK), W.L. Gore & Associates, Inc., Bing Energy Inc and Freudenberg SE.

Why Purchase the Report?

  • To visualize the Global Proton-Exchange Membrane Fuel Cell Market segmentation based on type, component, application, end-user and region and understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous proton-exchange membrane fuel cell market-level data points with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The Global Proton-Exchange Membrane Fuel Cell Market Report Would Provide Approximately 72 Tables, 70 Figures And 200 pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Component
  • 3.3. Snippet by Application
  • 3.4. Snippet by End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Rising Demand for Clean Energy Alternatives
    • 4.1.2. Restraints
      • 4.1.2.1. High Production and Integration Cost
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. Planar *
    • 7.2.1. Introduction
      • 7.2.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Tubular

8. By Component

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 8.1.2. Market Attractiveness Index, By Component
  • 8.2. Membrane Electrode Assemblies (MEA) *
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Stacks
    • 8.3.1. Less than 5W Stacks
    • 8.3.2. 5W to 100W Stacks
    • 8.3.3. 100W to 1kW Stacks
    • 8.3.4. 1kW to 10kW Stacks
    • 8.3.5. PEM Fuel Cells for Drones, UAVs and Robotics
  • 8.4. Module
    • 8.4.1. Low-Temperature Proton Exchange Membrane Fuel Cell (60-80°C)
    • 8.4.2. High-Temperature Proton Exchange Membrane Fuel Cell (110-180°C)

9. By Application

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2. Market Attractiveness Index, By Application
  • 9.2. Stationary *
    • 9.2.1. Introduction
      • 9.2.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Transportation
  • 9.4. Portable

10. By End-User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2. Market Attractiveness Index, By End-User
  • 10.2. Power Generation *
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Residential and Commercial
  • 10.4. Military
  • 10.5. Retail
  • 10.6. Data Centers
  • 10.7. Combined Heat and Power
  • 10.8. Others

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. The U.S.
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. The UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Russia
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. M Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Nedstack Fuel Cell Technology BV*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. AVL
  • 13.3. PowerCell
  • 13.4. 3M
  • 13.5. Ballard Power Systems
  • 13.6. PLUG POWER INC
  • 13.7. Showa Denko K.K (SDK)
  • 13.8. W.L. Gore & Associates, Inc
  • 13.9. Bing Energy Inc
  • 13.10. Freudenberg SE

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us