封面
市場調查報告書
商品編碼
1489465

全球衛星太陽能電池材料市場2024-2031

Global Satellite Solar Cell Materials Market 2024-2031

出版日期: | 出版商: DataM Intelligence | 英文 182 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

概述

全球衛星太陽能電池材料市場2023年達到4,410萬美元,預計到2031年將達到1.24億美元,2024-2031年預測期間複合年成長率為13.8%。

認知到太空探索、通訊和地球觀測的戰略重要性,各國為衛星計畫提供了大量資源。太陽能電池將陽光轉化為電能,是衛星系統的重要組成部分,推動了對太陽能電池所用礦物的需求。全球衛星太陽能電池材料產業正在迅速擴張,這在很大程度上得益於全球政府的援助和投資。

根據日本提出的2022年預算,太空預算將超過14億美元,其中包括H3火箭、工程測試衛星9號和該國資訊收集衛星計畫的建造。印度22會計年度太空活動支出計畫預計為18.3億美元。 2022年,韓國科學與資訊通訊部計畫投入6.19億美元的太空預算,用於生產衛星、火箭和其他關鍵太空設備。

到2023年,北美預計將成為主導地區,佔全球衛星太陽能電池材料市場的35%以上。該市場的成長得益於北美作為太空創新和研究中心的地位,以及世界上最大的航太機構美國太空總署的存在。 2022年,美國政府在太空計畫上花費了約620億美元,成為世界上支出最多的國家。在美國,聯邦機構每年從國會獲得 323.3 億美元的資金,稱為預算資源,用於其子公司。

動力學

衛星小型化不斷進步

衛星設計的改進,如縮小尺寸、提高功率效率和延長任務持續時間,需要使用更有效率、更持久的太陽能電池材料。小型衛星幾乎可以以一小部分成本執行典型衛星的所有任務,這使得開發、發射和營運小型衛星星座變得更加可行。

製造商不斷尋找能夠抵抗太空惡劣條件同時提高能量轉換效率的材料。北美的需求主要由美國推動,美國每年生產的小型衛星最多。 2017 年至 2022 年間,北美的幾位參與者將 596 顆奈米衛星送入軌道。美國宇航局參與了旨在建造這些衛星的計畫。

政府投資增加

政府航太機構繼續資助用於科學研究、國家安全、環境監測和救災的衛星任務。這些計畫大大增加了對衛星太陽能電池材料的需求,因為需要太陽能電力來維持衛星在軌道上的運作。英國政府計畫投資75億美元升級武裝部隊的衛星通訊能力。

2020年7月,英國國防部授予空中巴士防務與航太公司一份價值6.3億美元的契約,用於建造一顆新的電信衛星,作為提高軍事能力的權宜之計。 2022年11月,歐空局建議未來三年增加25%的太空資金,以維持歐洲在地球觀測領域的主導地位,加強導航服務,並繼續與美國在探索方面合作。 ESA 敦促其 22 個州通過 2023-2025 年約 185 億歐元的預算。

成本高且材料效率有限

開發和製造用於太空應用的高品質太陽能電池材料需要大量的研發支出。此外,創造滿足空間設置嚴格標準的材料通常需要專門的設施和方法,從而導致製造成本增加。

儘管材料科學取得了進步,但太陽能電池將陽光轉化為電能的效率仍然受到限制。此外,太空的極端條件,如輻射暴露、溫度波動和微流星體撞擊,隨著時間的推移可能會損害太陽能電池材料的性能和壽命。這些限制限制了衛星太陽能電池的廣泛應用,需要繼續研究以提高效率和耐用性。

目錄

第 1 章:方法與範圍

  • 研究方法論
  • 報告的研究目的和範圍

第 2 章:定義與概述

第 3 章:執行摘要

  • 按材料分類
  • 軌道片段
  • 按應用程式片段
  • 按地區分類的片段

第 4 章:動力學

  • 影響因素
    • 促進要素
      • 衛星小型化不斷進步
      • 政府投資增加
    • 限制
      • 成本高且材料效率有限
    • 機會
    • 影響分析

第 5 章:產業分析

  • 波特五力分析
  • 供應鏈分析
  • 定價分析
  • 監管分析
  • 俄烏戰爭影響分析
  • DMI 意見

第 6 章:COVID-19 分析

  • COVID-19 分析
    • COVID-19 之前的情況
    • COVID-19 期間的情況
    • COVID-19 後的情景
  • COVID-19 期間的定價動態
  • 供需譜
  • 疫情期間政府與市場相關的舉措
  • 製造商策略舉措
  • 結論

第 7 章:按材料

  • 砷化鎵 (GaAs)
  • 銅銦鎵硒 (CIGS)
  • 其他

第 8 章:按軌道

  • 高橢圓軌道 (HEO)
  • 中地球軌道 (MEO)
  • 近地軌道 (LEO)
  • 地球靜止軌道(GEO)
  • 極地軌道

第 9 章:按申請

  • 太空站
  • 衛星
  • 流浪者隊
  • 其他

第 10 章:按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 俄羅斯
    • 歐洲其他地區
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地區
  • 亞太
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 亞太其他地區
  • 中東和非洲

第 11 章:競爭格局

  • 競爭場景
  • 市場定位/佔有率分析
  • 併購分析

第 12 章:公司簡介

  • SPECTROLAB
    • 公司簡介
    • 產品組合和描述
    • 財務概覽
    • 主要進展
  • AZUR SPACE Solar Power GmbH
  • ROCKET LAB USA
  • Sharp Corporation
  • CESI SpA
  • Thales Alenia Space
  • Airbus
  • MicroLink Devices, Inc.
  • Mitsubishi Electric Corporation
  • Northrop Grumman

第 13 章:附錄

簡介目錄
Product Code: MA8444

Overview

Global Satellite Solar Cell Materials Market reached US$ 44.1 million in 2023 and is expected to reach US$ 124.0 million by 2031, growing with a CAGR of 13.8% during the forecast period 2024-2031.

Recognizing the strategic importance of space exploration, communication and Earth observation, countries have given significant resources to satellite programs. Solar cells, which convert sunlight into electricity, are essential components of satellite systems, driving up demand for minerals used in solar cells. The global satellite solar cell materials industry is expanding rapidly, owing by large part to government assistance and investments around the globe.

According to Japan's proposed budget for 2022, the space budget would exceed US$ 1.4 billion, which includes the construction of the H3 rocket, Engineering Test Satellite-9 and the country's Information Gathering Satellite program. The estimated spending plan for India's space activities in FY22 was US$ 1.83 billion. In 2022, South Korea's Ministry of Science and ICT planned a space budget of US$ 619 million for producing satellites, rockets and other critical space equipment.

In 2023, North America is expected to be the dominant region with over 35% of the global satellite solar cell materials market. The market growth is due to North America's status as the epicenter of space innovation and research, as well as the presence of NASA, the world's largest space agency. In 2022, U.S. government spent about US$ 62 billion on space programs, making it the world's largest spender. In U.S., federal agencies receive funding from Congress of US$ 32.33 billion per year, called budgetary resources, for its subsidiaries.

Dynamics

Rising Advancements for Satellite Miniaturization

Satellite improvements in design like downsizing, increased power efficiency and longer mission durations necessitate the use of more efficient and long-lasting solar cell materials. The capacity of small satellites to perform virtually all of the duties of a typical satellite at a fraction of the cost has made it more feasible to develop, launch and operate small satellite constellations.

Manufacturers are constantly looking for materials that can resist the harsh conditions of space while increasing energy conversion efficiency. The demand in North America is mostly driven by U.S., which produces the most small satellites each year. Between 2017 and 2022, several participants in North America launched 596 nanosatellites into orbit. NASA participates in programs aiming at building these satellites.

Rising Government Investments

Government space agencies continue to fund satellite missions for scientific research, national security, monitoring the environment and disaster relief. The programs greatly increase the need for satellite solar cell materials, as solar electricity is required to maintain satellite operations in orbit. UK government plans to upgrade the armed forces' satellite telecommunication capability by US$ 7.5 billion.

In July 2020, UK Ministry of Defence granted Airbus Defence and Space a contract worth US$ 630 million to build a new telecommunications satellite as a stopgap to improve military capabilities. In November 2022, ESA recommended a 25% increase in space funding for the next three years to preserve Europe's dominance in Earth observation, enhance navigation services and continue to collaborate with U.S. on exploration. ESA urged its 22 states to adopt a budget of approximately EUR 18.5 billion for 2023-2025.

High Costs and Limited Material Efficiency

Developing and fabricating high-quality solar cell materials for space applications necessitates significant R&D spending. Furthermore, the creation of materials that fulfill the demanding standards for space settings frequently necessitates specialized facilities and methods, resulting in increased manufacturing costs.

Despite advances in material science, solar cells' efficiency at converting sunlight into power remains restricted. Furthermore, the extreme conditions of space, like as radiation exposure, temperature fluctuations and micrometeoroid impacts, can damage the performance and longevity of solar cell materials over time. The restrictions restrict the broad implementation of satellite solar cells, requiring continued research to enhance efficiency and durability.

Segment Analysis

The global satellite solar cell materials market is segmented based on material, orbit, application and region.

Rising Number of Satellite Launches Drives the Segment Growth

Satellite is expected to be the dominant segment with over 30% of the market during the forecast period 2024-2031. The increasing frequency of satellite launches for a variety of purposes, including communication, navigation, earth observation, scientific research and defense, is a major driver of satellite solar cell materials. Each satellite requires solar cells to power its operations, resulting in a steady demand for these components.

Market participants are forging alliances, making acquisitions and merging to enhance their position and extend their products in the market. For example, in May 2023, Arabsat, a global supplier of television and telecommunications satellites, launched its Arabsat Badr-8 with a SpaceX Falcon 9 rocket from Cape Canaveral, Florida, U.S. Badr-8 intends to provide innovative satellite services to customers.

Geographical Penetration

Rising Investments in Space Infrastructure in Asia-Pacific

Asia-Pacific is expected to be the fastest growing region in the global satellite solar cell materials market covering over 20% of the market. The market for satellite solar cell materials is expanding rapidly as a result of growing investment in space-based infrastructure. For example, in September 2023, NewSpace India Limited declared a US$ 1.2 billion investment over the following five years. The program aims to increase industry engagement and encourage commercial enterprises in the sector.

The demand for secure and efficient power generation systems to support space-related activities is increasing as governments, private corporations and international organizations invest more in them. Materials used in satellite solar cells, the primary power source for satellites in orbit, will benefit from this advancement. In addition to increasing demand for solar cell materials, funding for space-based infrastructure projects promotes innovation and technological breakthroughs in the solar cell industry.

Competitive Landscape

The major global players in the market include SPECTROLAB, AZUR SPACE Solar Power GmbH, ROCKET LAB USA, Sharp Corporation, CESI S.p.A, Thales Alenia Space, Airbus, MicroLink Devices, Inc., Mitsubishi Electric Corporation and Northrop Grumman.

COVID-19 Impact Analysis

The epidemic showed the significance of resilience and continuity in essential infrastructure, like satellite communication and observation systems. As a result, there may be more investment in satellite technology for applications like remote sensing, telecommunications and disaster management. As governments and corporations emphasize the upgrading of satellite infrastructure, it has the potential to increase long-term demand for satellite solar cells and materials.

The transition to remote work arrangements and travel constraints presented issues for satellite makers and their supply chains. Lack of in-person encounters hampered collaboration and coordination in the design, testing and production of satellite components, particularly solar cells. It caused delays in product development and distribution.

Russia-Ukraine War Impact

Ukraine is a major global source of raw materials like titanium, which is used to make satellite components like solar cells. Any interruption in the supply chain caused by the conflict could result in material shortages or price rises, affecting satellite solar cell manufacture. The dispute might cause geopolitical instability, affecting trade relations and investment decisions.

Satellite production necessitates globally collaboration and supply networks and any geopolitical friction can disrupt these partnerships, influencing the availability and cost of solar cell components. In contrast, the conflict could raise demand for satellite technology for surveillance and communication purposes, particularly for organizations and governments involved in the conflict or attempting to monitor it.

By Material

  • Gallium Arsenide (GaAs)
  • Silicon
  • Copper Indium Gallium Selenide (CIGS)
  • Others

By Orbit

  • Highly Elliptical Orbit (HEO)
  • Medium Earth Orbit (MEO)
  • Low Earth Orbit (LEO)
  • Geostationary Orbit (GEO)
  • Polar Orbit

By Application

  • Space Stations
  • Satellite
  • Rovers
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In 2024, Australia's national research agency, CSIRO, created cutting-edge printed flexible solar cell technology, which was successfully launched into space on March 5 atop Australia's largest private satellite, Optimus-1, as part of SpaceX's Transporter-10 mission. CSIRO is researching the possibilities of printed flexible solar cells as a stable energy source for future space ventures, in partnership with the Australian space transportation supplier, Space Machines Company.
  • In 2023, LONGi has set the new world record for silicon-perovskite tandem solar cells by achieving 33.9 percent efficiency. The achievement has been verified by U.S. National Renewable Energy Laboratory, according to a corporate press release.

Why Purchase the Report?

  • To visualize the global satellite solar cell materials market segmentation based on material, orbit, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of satellite solar cell materials market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global satellite solar cell materials market report would provide approximately 62 tables, 56 figures and 182 pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1.Methodology and Scope

  • 1.1.Research Methodology
  • 1.2.Research Objective and Scope of the Report

2.Definition and Overview

3.Executive Summary

  • 3.1.Snippet by Material
  • 3.2.Snippet by Orbit
  • 3.3.Snippet by Application
  • 3.4.Snippet by Region

4.Dynamics

  • 4.1.Impacting Factors
    • 4.1.1.Drivers
      • 4.1.1.1.Rising Advancements for Satellite Miniaturization
      • 4.1.1.2.Rising Government Investments
    • 4.1.2.Restraints
      • 4.1.2.1.High Costs and Limited Material Efficiency
    • 4.1.3.Opportunity
    • 4.1.4.Impact Analysis

5.Industry Analysis

  • 5.1.Porter's Five Force Analysis
  • 5.2.Supply Chain Analysis
  • 5.3.Pricing Analysis
  • 5.4.Regulatory Analysis
  • 5.5.Russia-Ukraine War Impact Analysis
  • 5.6.DMI Opinion

6.COVID-19 Analysis

  • 6.1.Analysis of COVID-19
    • 6.1.1.Scenario Before COVID-19
    • 6.1.2.Scenario During COVID-19
    • 6.1.3.Scenario Post COVID-19
  • 6.2.Pricing Dynamics Amid COVID-19
  • 6.3.Demand-Supply Spectrum
  • 6.4.Government Initiatives Related to the Market During Pandemic
  • 6.5.Manufacturers Strategic Initiatives
  • 6.6.Conclusion

7.By Material

  • 7.1.Introduction
    • 7.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 7.1.2.Market Attractiveness Index, By Material
  • 7.2.Gallium Arsenide (GaAs)*
    • 7.2.1.Introduction
    • 7.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3.Silicon
  • 7.4.Copper Indium Gallium Selenide (CIGS)
  • 7.5.Others

8.By Orbit

  • 8.1.Introduction
    • 8.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 8.1.2.Market Attractiveness Index, By Orbit
  • 8.2.Highly Elliptical Orbit (HEO)*
    • 8.2.1.Introduction
    • 8.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3.Medium Earth Orbit (MEO)
  • 8.4.Low Earth Orbit (LEO)
  • 8.5.Geostationary Orbit (GEO)
  • 8.6.Polar Orbit

9.By Application

  • 9.1.Introduction
    • 9.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2.Market Attractiveness Index, By Application
  • 9.2.Space Stations*
    • 9.2.1.Introduction
    • 9.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3.Satellite
  • 9.4.Rovers
  • 9.5.Others

10.By Region

  • 10.1.Introduction
    • 10.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2.Market Attractiveness Index, By Region
  • 10.2.North America
    • 10.2.1.Introduction
    • 10.2.2.Key Region-Specific Dynamics
    • 10.2.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.2.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1.U.S.
      • 10.2.6.2.Canada
      • 10.2.6.3.Mexico
  • 10.3.Europe
    • 10.3.1.Introduction
    • 10.3.2.Key Region-Specific Dynamics
    • 10.3.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.3.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1.Germany
      • 10.3.6.2.UK
      • 10.3.6.3.France
      • 10.3.6.4.Italy
      • 10.3.6.5.Russia
      • 10.3.6.6.Rest of Europe
  • 10.4.South America
    • 10.4.1.Introduction
    • 10.4.2.Key Region-Specific Dynamics
    • 10.4.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.4.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1.Brazil
      • 10.4.6.2.Argentina
      • 10.4.6.3.Rest of South America
  • 10.5.Asia-Pacific
    • 10.5.1.Introduction
    • 10.5.2.Key Region-Specific Dynamics
    • 10.5.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.5.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1.China
      • 10.5.6.2.India
      • 10.5.6.3.Japan
      • 10.5.6.4.Australia
      • 10.5.6.5.Rest of Asia-Pacific
  • 10.6.Middle East and Africa
    • 10.6.1.Introduction
    • 10.6.2.Key Region-Specific Dynamics
    • 10.6.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 10.6.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Orbit
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

11.Competitive Landscape

  • 11.1.Competitive Scenario
  • 11.2.Market Positioning/Share Analysis
  • 11.3.Mergers and Acquisitions Analysis

12.Company Profiles

  • 12.1.SPECTROLAB*
    • 12.1.1.Company Overview
    • 12.1.2.Product Portfolio and Description
    • 12.1.3.Financial Overview
    • 12.1.4.Key Developments
  • 12.2.AZUR SPACE Solar Power GmbH
  • 12.3.ROCKET LAB USA
  • 12.4.Sharp Corporation
  • 12.5.CESI S.p.A
  • 12.6.Thales Alenia Space
  • 12.7.Airbus
  • 12.8.MicroLink Devices, Inc.
  • 12.9.Mitsubishi Electric Corporation
  • 12.10.Northrop Grumman

LIST NOT EXHAUSTIVE

13.Appendix

  • 13.1.About Us and Services
  • 13.2.Contact Us