封面
市場調查報告書
商品編碼
1529367

全球正極材料市場 - 2024-2031

Global Cathode Materials Market - 2024-2031

出版日期: | 出版商: DataM Intelligence | 英文 200 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

全球正極材料市場概況

2023年全球正極材料市場規模為285.6億美元,預估至2031年將達769.9億美元,預測期間(2024-2031年)複合年成長率為13.2%。

鋰和金屬構成陰極的活性成分。根據金屬的類型及其比例,活性材料具有不同的特性。 Ni(鎳)具有高容量,Mn(錳)和Co(鈷)具有高安全性,Al(鋁)可增強電池的功率。 Mg:Ag (10:1)、LiF 和 Mg:Al 是最常用的陰極。陰極通常由鋁 (Al) 製成,但也研究了 MgO、CsF、Al2O3 和 NaCl 等替代絕緣層,以改善電子注入。鋰(離子)和鈉(離子)陰極材料與經典LIB和SIB(分別為鋰離子和鈉離子電池)中使用的材料相同。

正極材料是一種電池,可以將電能儲存在能量中,然後在需要時將其轉換為電能。正極材料由正極、負極和溶液三大部分組成。在石化過程中,陰極定義了電池的端電壓正極,而電極則從外部電路獲取電子。

正極材料由磷酸鐵鋰、鈷酸鋰、鎳錳鈷鋰和二氧化鉛組成。金屬-絕緣體轉變、電荷排序和協同 Jahn-Teller 畸變只是這些材料所表現出的顯著物理現象的一小部分。控制陰極材料的局部動態和結構行為對於開發具有創新功能的客製化儲能裝置至關重要。

全球正極材料市場動態

攜帶式電子產品、固定式儲能和電動車的使用不斷增加,推動了對正極材料的更大需求。具有高能量密度、放電能力和快速充電能力的鋰離子電池越來越受歡迎。

鋰離子電池用於各種用途的趨勢

鋰離子電池在筆記型電腦、平板電腦、手機、數位相機和其他類似設備等攜帶式電子配件和設備中的使用越來越多,正在推動這些應用中的電池成長,從而導致對正極材料的需求增加。在消費性電子和汽車產業的啟動、照明和點火應用中,電池的使用量正在穩步增加。此外,用於汽車、船舶和機車的混合動力和電動引擎的發展正在增加運輸業對電池的需求。

由於這一發展,全世界對正極材料的需求急劇增加。電池的另一個應用是家庭、企業和工業的備用電源,以及維持電網和電信塔的不間斷供電。隨著電力產業現代化、城鎮化和智慧城市的發展,預計短期內對電池和正極材料的需求將穩定成長。

節能需求不斷成長

在預測期內,儲能應用可能會增加產品消耗。消費性電子產品、電動工具、堆高機、電信、ESS、UPS 和運輸都是電池的常見用途。對停電及其對工業運作影響的擔憂刺激了對不間斷供電系統的需求。化學、製造、石油和天然氣以及醫療保健只是其中的幾個行業。從傳統能源向替代能源的持續轉變以及對節能的不斷成長的需求預計將加速先進儲能系統的使用。

智慧電網和再生能源趨勢的日益普及預計將增加對這些系統的需求。為提高 ESS 正極材料(包括鋰、鈉和鎳)的效率而進行的長期持續研發預計將為原料製造商提供重要前景。正極材料市場參與者對永續電池材料採購、回收和廢棄物處理的認知不斷提高,對於最佳化跨地區的生產和處理路線具有重要意義。

原料安全、成本高

產能有限、生產能耗高、安全問題和原料成本高都是無機正極材料常用的缺點。因此,需要具有更高比容量、更高安全特性和更豐富自然資源的綠色和永續正極材料。活動期間對正極材料安全性的日益成長的需求阻礙了市場的擴張。

COVID-19 影響分析

受COVID-19疫情影響,全球正極材料市場受到嚴重影響。然而,在預測期內,電池在儲存和運輸方面嚴格的安全規定以及COVID-19疫情造成的惡劣條件預計將阻礙正極材料市場的成長。

隨著疫情對需求的負面影響蔓延至中國電池和正極材料生產商,預計中國5月對日本和韓國的LCO材料出口訂單將減少,對印度的LCO電池出口訂單預計將減少。

全球正極材料細分市場分析

以電池來看,正極材料市場分為鋰離子、鉛酸等。

鉛酸佔據最大佔有率。

在鋰離子電池中,正極材料是影響電池能量密度最重要的組成部分。電池電壓或電池容量用於計算此能量密度。鋰離子電池的工作機制是基於嵌入和脫嵌化學物質。來自陰極的鋰離子在充電過程中進入陽極並在放電過程中退出,陽極的結構變化可以忽略不計。

所使用的陰極材料由多種特性決定,包括電池電壓、容量、能量和功率能力、循環壽命和工作溫度。鋰離子電池的陰極使用鈷、錳、磷酸鹽、鎳鈷錳(NCM OR NMC)、磷酸鐵鋰(LFP)和其他礦物質。由於可靠性和相容性的提高,對鋰離子電池的需求增加,從而刺激了對正極材料的需求。此外,由於鋰離子電池應用數量的擴大,該產業也得到了發展。

全球正極材料市場地域分析

最大佔有率由亞太公司持有。

技術進步正在導致這些設施中的儲能系統激增,預計這將在未來幾年推動對陰極材料的需求。在整個預測期內,亞太地區預計將成為全球主要的收入提供者。汽車、消費性電子產品、電動工具和儲能系統等各行業電池的使用不斷增加,可能會增加對正極材料的需求。

電動車在中國等國家的日益普及可能會增加對正極材料的需求。高能量密度、放電能力和快速充電是鋰離子電池的優勢,中國、印度和越南等國家智慧型裝置和其他消費性電子產品市場的不斷成長也是如此。除了生產之外,中國由於其大規模的電子和汽車製造而成為電池的主要用戶。

俄羅斯-烏克蘭戰爭影響

俄羅斯和烏克蘭在鋰、鈷、鎳、錳等關鍵材料生產中發揮重要作用,但由於戰爭,材料生產受到影響。因此,原料的生產成本增加,導致正極材料的價格上漲。由於生產成本增加,正極材料的品質下降。

由於這場衝突,政府的嚴厲政策和貿易政策影響了正極材料市場的成長。經濟不穩定和成本波動影響了正極材料市場的整體需求。各國之間存在貿易限制,限制了正極材料的進出口。由於衝突,研究人員和科學家之間的合作似乎也受到了打擊。

透過電池

  • 鋰離子
  • 鉛酸
  • 其他

按材質

  • 磷酸鐵鋰 (LFP)
  • 鈷酸鋰 (LCO)
  • 鋰鎳錳鈷 (NMC)
  • 鋰鎳鈷鋁 (NCA)
  • 錳酸鋰 (LMO)
  • 二氧化鉛
  • 其他

按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 俄羅斯
    • 歐洲其他地區
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地區
  • 亞太
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 亞太其他地區
  • 中東和非洲

主要進展

  • 2024年2月,POSCO宣佈在光陽建造全球最大的電瓶正極工廠群,用於生產鎳鈷鋁(NCA)電瓶正極材料。該工廠將擁有52,500噸正極材料的生產能力。
  • 2023年12月,LG化學在美國田納西州動工興建美國最大的正極工廠,年產能為6萬噸。
  • 2023年10月,優美科宣布透過提高其位於加拿大安大略省工廠的正極活性材料(CAM)和前體正極活性材料(PCAM)產能來擴大其電動車(EV)電池材料生產。
  • 2023年4月20日,OCSiAL推出了兩種用於陽極和陰極應用的高濃度石墨烯奈米管,提供具有成本效益的永續電池解決方案,包括多壁奈米碳管和炭黑。
  • 2023 年 5 月 1 日,卡博特公司推出了用於鋰離子電池的 ENTERA 氣凝膠顆粒,旨在為電動車開發超薄隔熱層。 ENTERA 產品被電池和電動車製造商使用,提供熱管理解決方案。
  • 2023年5月22日,國軒高科推出了L600 Astroinno電池組,號稱是首款續航力高達1,000公里的非三元電池。

目錄

目錄

第 1 章:方法與範圍

第 2 章:定義與概述

第 3 章:執行摘要

第 4 章:動力學

  • 影響因素
    • 促進要素
      • 電動車日益普及
      • 對永續和高效能儲能解決方案的需求不斷成長
    • 限制
      • 政府嚴格監管
      • 成本和健康危害
    • 機會
    • 影響分析

第 5 章:產業分析

  • 波特五力分析
  • 供應鏈分析
  • 定價分析
  • 監管分析
  • 俄烏戰爭影響分析
  • DMI 意見

第 6 章:COVID-19 分析

第 7 章:透過電池

  • 鋰離子
  • 鉛酸
  • 其他

第 8 章:按材料

  • 磷酸鐵鋰 (LFP)
  • 鈷酸鋰 (LCO)
  • 鋰鎳錳鈷 (NMC)
  • 鋰鎳鈷鋁 (NCA)
  • 錳酸鋰 (LMO)
  • 二氧化鉛
  • 其他

第 9 章:按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 俄羅斯
    • 西班牙
    • 歐洲其他地區
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地區
  • 亞太
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 亞太其他地區
  • 中東和非洲

第 10 章:競爭格局

  • 競爭場景
  • 市場定位/佔有率分析
  • 併購分析

第 11 章:公司簡介

  • Umicore
    • 公司概況
    • 產品組合和描述
    • 財務概覽
    • 主要進展
  • Sumitomo Metal Mining Co., Ltd.
  • POSCO
  • Zhejiang Huayou Cobalt
  • Shenzhen Dynanonic Co., Ltd.
  • Johnson Matthey
  • Targray Technology International
  • BASF SE
  • Mitsubishi Chemical Corporation
  • Kureha Corporation

第 12 章:附錄

簡介目錄
Product Code: MA5416

Global Cathode Materials Market Overview

The global cathode materials market size was worth US$ 28.56 billion in 2023 and is estimated to reach US$ 76.99 billion by 2031, growing at a CAGR of 13.2 % during the forecast period (2024-2031).

Lithium and metal make up the active components in cathodes. Depending on the type of metal and its ratio, active materials have varying properties. Ni(Nickel) has a high capacity, Mn(Manganese) and Co(Cobalt) have a high level of safety and Al(Aluminum) enhances the battery's power. Mg: Ag (10:1), LiF and Mg: Al is some of the most commonly used cathodes. The cathode is commonly made of aluminum (Al), but alternative insulating layers like MgO, CsF, Al2O3 and NaCl have also been investigated to improve electron injection. Lithium(-ion) and sodium(-ion) cathode materials are identical to those used in classic LIBs and SIBs (lithium-ion and sodium-ion batteries, respectively).

Cathode materials are a sort of electric battery that can store power in energy and then convert it to electricity when needed. Cathode materials are made up of three major components: cathode, anode and solution. During the petrochemical process, the cathode defines the positive side of the terminal voltage battery, while the electrode obtains electrons from the external circuit.

Lithium iron phosphate, lithium cobalt oxide, lithium nickel manganese cobalt and lead dioxide make up the cathode material. Metal-insulator transitions, charge-ordering and co-operative Jahn-Teller distortions are just a few of the remarkable physical phenomena these materials show. Controlling the cathode material's local dynamic and structural behavior is critical for developing a custom energy storage device with innovative features.

Global Cathode Materials Market Dynamics

The rising usage of portable electronic gadgets, stationary energy storage and electric vehicles is driving greater demand for cathode material. Lithium-ion batteries with high energy density, discharge capability and fast charging are becoming increasingly popular.

Trending use of lithium-ion batteries for various purposes

The growing use of lithium-ion batteries in portable electronic accessories and equipment such as laptops, tablets, mobile phones, digital cameras and other similar devices is driving battery growth in those applications, resulting in increased demand for cathode materials. In consumer electronics and the automotive industry for starting, lighting and ignition applications, the usage of batteries is steadily increasing. Furthermore, the development of hybrid and electric engines for use in automobiles, ships and locomotives is increasing the need for batteries in the transportation industry.

The demand for cathode materials is increasing dramatically over the world as a result of this development. Another application of batteries is for power backup in homes, businesses and industries and for maintaining an uninterrupted power supply in power grids and telecom towers. With the modernization of the power sector, urbanization and the development of smart cities, demand for batteries and cathode materials is predicted to rise steadily shortly.

Rising demand for energy conservation

During the projection period, energy storage applications will likely increase product consumption. Consumer electronics, power tools, forklifts, telecommunications, ESS, UPS and transportation are all batteries' common uses. Concerns about power outages and their impact on industrial operations have fueled demand for uninterruptible power supply systems. Chemical, manufacturing, oil & gas and healthcare are just a few industries. The ongoing transition from conventional to alternative energy sources and the rising need for energy conservation is expected to accelerate the use of advanced energy storage systems.

The growing use of smart grids and renewable energy trends are expected to increase demand for these systems. Long-term, ongoing R&D to improve the efficiency of cathode materials for ESS, including lithium, sodium and nickel, is predicted to provide significant prospects for raw material makers. Growing awareness among cathode materials market players about sustainable battery material sourcing, recycling and waste disposal has been significant in optimizing the production and disposal routes across geographies.

Safety and high costs of raw materials

Limited capacity, high energy consumption in production, safety issues and high-cost raw materials are all disadvantages of inorganic cathode materials, which are frequently used. As a result, green and sustainable cathode materials with higher specific capacities, improved safety features and more abundant natural resources are required. A growing desire for cathode material safety during activities hinders the market's expansion.

COVID-19 Impact Analysis

The global market for cathode materials has been drastically impacted due to the COVID-19 epidemic. However, over the projection period, strict safety rules for batteries in terms of storage and shipping and poor conditions resulting from the COVID-19 epidemic are expected to hinder the cathode materials market's growth.

As the pandemic's negative impact on demand spreads to Chinese battery cell and cathode material producers, China's May export orders of LCO materials to Japan and South Korea are expected to drop, while export orders of LCO batteries to India are expected to drop.

Global Cathode Materials Market Segment Analysis

By battery, the cathode materials market is segmented into lithium-ion, lead-acid and others.

Lead-acid to hold the lions' share.

In a lithium-ion battery, the cathode material is the most important component that affects the cell's energy density. Cell voltage or cell capacity are used to calculate this energy density. The lithium-ion battery's operating mechanism is based on intercalation and deintercalation chemicals. Lithium ions from the cathode are admitted into the anode during charging and withdrawn during discharging, with the anode's structural change being structural negligible.

The cathode material used is determined by several characteristics, including cell voltage, capacity, energy & power capability, cycle life and operating temperature. Cobalt, manganese, phosphate, nickel cobalt manganese (NCM OR NMC), lithium iron phosphate (LFP) and other minerals are utilized in the cathode of a lithium-ion battery. Increased demand for lithium-ion batteries has resulted from improved reliability and compatibility, which has fueled demand for cathode materials. Furthermore, the industry has grown due to an expansion in the number of applications for lithium-ion batteries.

Global Cathode Materials Market Geographical Analysis

The largest share is to be held by Asia-Pacific.

Technological improvements are causing a surge in energy storage systems in these facilities, which is projected to drive up demand for cathode materials in the future years. Asia-Pacific is expected to be a prominent revenue provider globally throughout the forecast horizon. The growing use of batteries in various industries, such as automotive, consumer electronics, power tools and energy storage systems, is likely to grow the demand for cathode materials.

The rising popularity of electric vehicles in nations like China will likely boost demand for cathode material. High energy density, discharge capacities and fast charging are advantages of lithium-ion batteries, as is the rising market for smart devices and other consumer electronics in countries like China, India and Vietnam. Aside from production, China is a major user of batteries due to its large-scale electronic and automobile manufacturing.

Russia-Ukraine War Impact

Both Russia and Ukraine play an important role in the production of critical materials such as lithium, cobalt, nickel and manganese but due to war, the production of materials got affected. Due to this, the production cost of raw materials increases, which results in an increased price of cathode materials. Due to the increment in production cost the quality of cathode materials degrade.

Due to this conflict, governments' stringent policies and trade policies impacted the growth of the cathode materials market. Economic instability and cost fluctuation affected the overall demand of the cathode Materials market. There is trade restriction that limits the import and export of cathode materials between countries. Due to conflict, the collaboration between researchers and scientists also seems to have taken a hit.

By Battery

  • Lithium-Ion
  • Lead Acid
  • Others

By Material

  • Lithium Iron Phosphate (LFP)
  • Lithium Cobalt Oxide (LCO)
  • Lithium Nickel Manganese Cobalt (NMC)
  • Lithium Nickel Cobalt Aluminum (NCA)
  • Lithium Manganese Oxide (LMO)
  • Lead-Dioxide
  • Other

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In February 2024, POSCO announced the construction of the world's largest battery cathode plant cluster in Gwangyang for producing cathode materials for nickel, cobalt, and aluminum (NCA) batteries. The plant will have a production capacity of 52,500 tons of cathode materials.
  • In December 2023, LG Chem commenced construction of America's largest cathode plant in Tennessee, United States, with an annual production capacity of 60,000 tons.
  • In October 2023, Umicore announced the expansion of its electric vehicle (EV) battery materials production by increasing its production capacity for cathode active materials (CAM) and precursor cathode active materials (PCAM) at its plant in Ontario, Canada.
  • On 20 April 2023, OCSiAL launched two highly concentrated graphene nanotubes for anode and cathode applications, offering cost-effective sustainable battery solutions, including multiwall carbon nanotubes and carbon black.
  • On 1 May 2023, Cabot Corporation introduced ENTERA aerogel particles for lithium-ion batteries, designed to develop ultra-thin thermal barriers for electric vehicles. The ENTERA product is utilized by both battery and EV manufacturers, providing thermal management solutions.
  • On 22 May 2023, Gotion High-tech, a China-based company, launched the L600 Astroinno battery cell pack, claiming it to be the first non-NCM battery to offer a driving range of up to 1,000 kilometers.

Competitive Landscape

The major global players in the market include Ademco Global, Aethon, ABB Group, Amazon Web Services Inc., Beetl Robotics, Berkshire Grey Inc., Cobalt Robotics, CYBERDYNE Inc., Fanuc Corporation, iRobot Corporation, inVia Robotics, Kongsberg Maritime, KUKA AG, Locus Robotics, Northrop Grumman, RedZone Robotics, Relay Robotics, Yaskawa Electric Corporation

Why Purchase the Report?

  • To visualize the global battery separator market segmentation based on component, enterprise size, end-use and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of battery separator market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global cathode materials market report would provide approximately 80 tables, 85 figures, and 200 Pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Battery
  • 3.2. Snippet by Material
  • 3.3. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Rising Popularity of Electric Vehicles
      • 4.1.1.2. Rising Demand for Sustainable and High-Performance Energy Storage Solutions
    • 4.1.2. Restraints
      • 4.1.2.1. Government Stringent Regulations
      • 4.1.2.2. Cost and Health Hazards
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID-19
    • 6.1.2. Scenario During COVID-19
    • 6.1.3. Scenario Post COVID-19
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Battery

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 7.1.2. Market Attractiveness Index, By Battery
  • 7.2. Lithium-Ion*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Lead Acid
  • 7.4. Others

8. By Material

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 8.1.2. Market Attractiveness Index, By Material
  • 8.2. Lithium Iron Phosphate (LFP)*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Lithium Cobalt Oxide (LCO)
  • 8.4. Lithium Nickel Manganese Cobalt (NMC)
  • 8.5. Lithium Nickel Cobalt Aluminum (NCA)
  • 8.6. Lithium Manganese Oxide (LMO)
  • 8.7. Lead-Dioxide
  • 8.8. Other

9. By Region

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 9.1.2. Market Attractiveness Index, By Region
  • 9.2. North America
    • 9.2.1. Introduction
    • 9.2.2. Key Region-Specific Dynamics
    • 9.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 9.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.2.5.1. The U.S.
      • 9.2.5.2. Canada
      • 9.2.5.3. Mexico
  • 9.3. Europe
    • 9.3.1. Introduction
    • 9.3.2. Key Region-Specific Dynamics
    • 9.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 9.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.3.5.1. Germany
      • 9.3.5.2. UK
      • 9.3.5.3. France
      • 9.3.5.4. Russia
      • 9.3.5.5. Spain
      • 9.3.5.6. Rest of Europe
  • 9.4. South America
    • 9.4.1. Introduction
    • 9.4.2. Key Region-Specific Dynamics
    • 9.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 9.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.4.5.1. Brazil
      • 9.4.5.2. Argentina
      • 9.4.5.3. Rest of South America
  • 9.5. Asia-Pacific
    • 9.5.1. Introduction
    • 9.5.2. Key Region-Specific Dynamics
    • 9.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 9.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 9.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.5.5.1. China
      • 9.5.5.2. India
      • 9.5.5.3. Japan
      • 9.5.5.4. Australia
      • 9.5.5.5. Rest of Asia-Pacific
  • 9.6. Middle East and Africa
    • 9.6.1. Introduction
    • 9.6.2. Key Region-Specific Dynamics
    • 9.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
    • 9.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material

10. Competitive Landscape

  • 10.1. Competitive Scenario
  • 10.2. Market Positioning/Share Analysis
  • 10.3. Mergers and Acquisitions Analysis

11. Company Profiles

  • 11.1. Umicore *
    • 11.1.1. Company Overview
    • 11.1.2. Product Portfolio and Description
    • 11.1.3. Financial Overview
    • 11.1.4. Key Developments
  • 11.2. Sumitomo Metal Mining Co., Ltd.
  • 11.3. POSCO
  • 11.4. Zhejiang Huayou Cobalt
  • 11.5. Shenzhen Dynanonic Co., Ltd.
  • 11.6. Johnson Matthey
  • 11.7. Targray Technology International
  • 11.8. BASF SE
  • 11.9. Mitsubishi Chemical Corporation
  • 11.10. Kureha Corporation

LIST NOT EXHAUSTIVE

12. Appendix

  • 12.1. About Us and Services
  • 12.2. Contact Us