封面
市場調查報告書
商品編碼
1560860

全球汽車複合材料市場 - 2024 - 2031

Global Automotive Composite Materials Market - 2024 - 2031

出版日期: | 出版商: DataM Intelligence | 英文 224 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

報告概述

2023年全球汽車複合材料市場規模達313.7億美元,預計2031年將達到710.1億美元,2024-2031年預測期間複合年成長率為10.75%。

汽車複合材料是主要用於卡車、轎車和其他車輛的輕質材料,主要用於引擎蓋下和整個內裝的應用。複合材料是備受青睞的汽車減重材料,使其適用於汽車行業的各種內部和外部用途。近年來,汽車行業複合材料的使用激增,這主要歸功於其卓越的尺寸穩定性。複合材料是理想的材料,因為它們具有形狀保持性、熱膨脹係數低、乾燥和潮濕環境下的耐腐蝕性、易於生產以及重量輕以最大限度地減少車輛總質量等特定功能。

汽車複合材料產業有著無可爭議的光明前景。隨著技術和生產技術的進步,複合材料將擴大取代鋼和鋁作為許多零件的原料。已經建立了汽車複合材料生產商和研究人員的虛擬網路,以有效地進行研究。同時,虛擬網路將結合所有行業專業人士,整合汽車複合材料價值鏈的各個方面,推動產業和材料廣泛接受。

鑑於中國汽車製造商眾多,它是亞太地區汽車複合材料的主要市場之一。根據 IEA 資料庫,中國在 2021 年實現了最高的汽車產量,佔全球電動車銷量的 50% 以上,達到 660 萬輛。由於全球主要汽車製造商集中,亞太地區具有主導汽車複合材料市場的巨大潛力。

市場動態

對輕量化和節能汽車的需求成長:

由於車輛重量直接影響駕駛動力和燃油效率,汽車產業越來越優先考慮車輛重量。鑑於可能的輕量化解決方案的價格過高以及消費者投資汽車行業減重的意願有限,昂貴的輕質材料的使用迄今為止受到限制。

全球各國政府正在執行嚴格的排放規則,並打算在未來幾年制定更嚴格的排放要求,凸顯了輕質材料日益成長的重要性。纖維佔標準汽車體積的 50%,但僅佔總重量的 10%。美國的監管要求要求到 2025 年平均燃油經濟性標準必須達到每加侖至少 54.5 英里。

印度是一個對里程敏感的市場,由於對提高汽車燃油效率的需求不斷增加,為複合材料提供了利潤豐厚的機會。這可以透過使用各種複合組合物來實現。雖然複合材料有潛力在該國產生巨大的經濟產出,但與汽車中這些複合材料的研發相關的費用可能會阻礙市場的成長。

鑑於新興國家對輕量化汽車需求的快速成長,碳纖維複合材料市場預計將顯著成長。

高成本與回收挑戰:汽車複合材料產業的主要限制:

複合材料的使用在各種車輛部件的生產中呈指數級成長,包括外部、內部、底盤和動力總成。儘管如此,與加工和製造相關的高昂費用限制了複合材料的應用。因此,必須使用某些工具來精確地確定初始階段的費用,以盡量減少與之相關的總成本。儘管對耐用和輕質產品的需求不斷增加,但複合材料的高昂價格限制了汽車複合材料產業。鑑於複合材料的價格過高,最終消費者強烈青睞使用傳統金屬製品。

汽車複合材料產業的可回收性問題比回收金屬材料所面臨的問題更加複雜和複雜。對此的一種解釋是因為纖維增強部件經常透過金屬固定的方式連接到其他部件。主要挑戰在於出於回收目的而從車輛部件上拆卸、分離和脫粘所涉及的複雜性。此外,雖然組分可以彼此分離,但從複合材料中單獨提取組成組分是一項挑戰。這是因為複合材料由不同材料組合而成,無法熔化和回收。因此,塑膠和複合材料行業的多樣化回收法規以及低效率的回收技術正在阻礙市場的發展。

細分市場分析

全球汽車複合材料市場根據纖維類型、樹脂類型、製造流程、應用、車輛類型和地區進行細分。

根據纖維類型,玻璃纖維複合材料主導市場:

玻璃纖維複合材料因其卓越的強度、剛度、柔韌性和耐化學損傷等特性而在汽車領域中廣泛應用。近年來,為了提高燃油效率和減少排放,對輕質材料的需求大幅增加。由於與碳纖維和天然纖維相比成本較低,玻璃纖維複合材料在汽車領域已廣泛應用。

此外,引擎蓋、儲槽和儀表板等車身部件均採用天然纖維複合材料生產,以盡量減少對鋼和鋁等其他金屬的依賴,並鼓勵生物基材料在汽車領域的使用和擴展。

受適應性底盤平台需求的推動,SGL Carbon 將於 2020 年 2 月推出一款新型複合電池容器。除了碳纖維電池外殼外,該公司還推出了由玻璃纖維複合材料製成的板簧。

休閒車製造的深刻轉變對汽車複合材料的銷售產生了有益的影響。汽車銷售的下降伴隨著汽車輕量化需求的大幅成長,進而帶動了汽車複合材料的銷售。對提高燃油效率和時尚內飾設計的日益成長的需求將推動玻璃纖維複合材料的市場需求。

市場地域佔有率

亞太地區汽車複合材料市場預計將佔據最大佔有率:

較低的原料和生產成本帶來的競爭優勢,加上汽車產量的持續成長,預計將推動該地區市場的擴張。

遵守中國、印度和日本嚴格的污染標準預計將減輕車輛的重量,從而提高燃油效率。透過用複合材料取代重金屬零件可以實現車輛減重。此外,「印度製造」等政府計劃預計將促進印度汽車產業的擴張,從而刺激未來幾年對汽車複合材料的需求。

鑑於中國汽車製造商眾多,它是亞太地區汽車複合材料的主要市場之一。 2021年,中國實現了最高的汽車產量,並實現了值得注意的里程碑,佔全球電動車銷量的50%以上,根據IEA的數據,該銷量達到660萬輛。考慮到亞太地區作為全球主要汽車製造商中心所在地的地位,在預計的時間範圍內具有主導汽車複合材料市場的巨大潛力。使用輕質材料來提高燃油效率迫使複合材料在汽車應用中的應用,從而刺激了該地區對這些產品的需求。

俄烏戰爭影響分析

俄羅斯和烏克蘭之間的長期衝突嚴重影響了全球汽車複合材料產業,特別是影響了供應鏈和原料的定價。由於俄羅斯作為鋁和鈦等重要原料的主要供應國的重要地位,持續的衝突導致供應路線中斷並導致價格上漲。儘管如此,亞太地區(即中國和印度)的汽車複合材料產業仍然強勁。由於其具有成本效益的原料和生產基礎設施,以及不斷成長的汽車行業,該地區具有明顯的優勢,使其能夠減輕部分全球衝擊。除了中國在電動車生產方面佔據主導地位之外,「印度製造」舉措也增強了該地區在全球市場上發揮重大影響力的能力。

此外,中國、印度和日本執行嚴格的污染規定正在加速採用輕質複合材料來提高汽車燃油效率,推動了這些材料的市場,儘管面臨地緣政治挑戰。亞太地區擁有多家製造商,2021 年電動車銷量將佔全球電動車銷量的 50% 以上,該地區正在持續有效地利用其作為重要製造中心的地位。在監管限制和該地區高度發展的工業基礎設施的推動下,持久的需求確保了汽車複合材料行業的耐用性,即使面臨持續衝突造成的外部干擾。

按光纖類型

玻璃纖維

碳纖維

其他

依樹脂類型

熱固性材料

熱塑性塑膠

按製造程序

壓縮成型

射出成型

樹脂傳遞模塑 (RTM)

其他

按申請

外部的

內部的

動力總成及底盤

電池外殼

按車型分類

非電動

電的

按地區

北美洲

我們

加拿大

墨西哥

歐洲

德國

英國

法國

義大利

俄羅斯

歐洲其他地區

南美洲

巴西

阿根廷

南美洲其他地區

亞太

中國

印度

日本

澳洲

亞太其他地區

中東和非洲

主要進展

2023 年 2 月,東麗工業公司率先推出了一種快速整合成型方法,專為碳纖維增強塑膠 (CRFP) 製成的移動部件而設計。這項創新將比傳統成型裝置更有效、更快速地促進 CFRP 移動部件的成型。

2022 年 2 月,負責帝人集團汽車複合材料部門的主要實體帝人汽車技術公司開始在中國建造兩座新工廠和一座工廠。該舉措旨在滿足電動車產業不斷擴大對複合材料日益成長的需求。

2022 年 2 月,帝人有限公司與日本再生碳纖維生產商 Fuji Design Co. Ltd. 成立了一家合作企業,提供、行銷和製造由再生碳纖維製成的碳纖維增強產品 (CFRP)。

市場競爭格局

該市場的主要全球參與者包括東麗工業公司、西格里碳素、帝人有限公司、三菱化學控股公司、赫氏公司、歐文康寧斯、索爾維公司、固瑞特、UFP技術有限公司、亨斯曼公司和瀚森公司

為什麼購買報告?

根據纖維類型、樹脂類型、製造流程、應用、車輛類型和地區可視化全球汽車複合材料市場細分,並了解關鍵商業資產和參與者。

透過分析趨勢和共同開發來識別商業機會。

Excel資料表包含汽車複合材料市場所有細分市場的大量資料點。

PDF 報告由詳盡的質性訪談和深入研究後的綜合分析組成。

產品映射以 Excel 形式提供,包含所有主要參與者的關鍵產品。

全球汽車複合材料市場報告將提供約 86 個表格、85 個圖表和 224 頁。

2024 年目標受眾

製造商/買家

產業投資者/投資銀行家

研究專業人員

新興公司

目錄

第 1 章:方法與範圍

第 2 章:定義與概述

第 3 章:執行摘要

第 4 章:動力學

  • 影響因素
    • 促進要素
      • 對輕量化和節能汽車的需求成長
    • 限制
      • 高成本與回收挑戰:汽車複合材料產業的主要限制
    • 機會
    • 影響分析

第 5 章:產業分析

  • 波特五力分析
  • 供應鏈分析
  • 定價分析
  • 監管分析
  • 俄烏戰爭影響分析
  • DMI 意見

第 6 章:依纖維類型

  • 玻璃纖維
  • 碳纖維
  • 其他

第 7 章:按樹脂類型

  • 熱固性材料
  • 熱塑性塑膠

第 8 章:依製造流程分類

  • 壓縮成型
  • 射出成型
  • 樹脂傳遞模塑 (RTM)
  • 其他

第 9 章:按申請

  • 外部的
  • 內部的
  • 動力總成及底盤
  • 電池外殼

第 10 章:依車輛類型

  • 非電動
  • 電的

第 11 章:按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 西班牙
    • 歐洲其他地區
  • 南美洲
    • 巴西
    • 阿根廷
    • 南美洲其他地區
  • 亞太
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 亞太其他地區
  • 中東和非洲

第 12 章:競爭格局

  • 競爭場景
  • 市場定位/佔有率分析
  • 併購分析

第 13 章:公司簡介

  • Toray Industries Inc.
    • 公司概況
    • 產品組合和描述
    • 財務概覽
    • 主要進展
  • SGL Carbon
  • Teijin Limited
  • Mitsubishi Chemical Holding Corporation
  • Hexcel Corporation
  • Owen Corning
  • Solvay SA
  • Gurit
  • UFP Technologies Ltd.
  • Huntsman Corporation
  • Hexion (*LIST NOT EXHAUSTIVE)

第 14 章:附錄

簡介目錄
Product Code: AUTR83

Report Overview

Global Automotive Composite Materials Market reached US$ 31.37 billion in 2023 and is expected to reach US$ 71.01 billion by 2031, growing with a CAGR of 10.75% during the forecast period 2024-2031.

Automotive composites are lightweight materials predominantly employed in trucks, cars, and other vehicles, mainly for applications under the hood and across the interiors. Composites are highly favored materials for reducing weight in automobiles, making them suitable for various interior and exterior uses in the automotive industry. The automotive sector has seen a surge in the use of composite materials in recent years, mostly attributed to their exceptional dimensional stability. Composites are desirable materials because to their specific features like shape retention, low coefficient of thermal expansion, corrosion resistance in both dry and wet circumstances, ease of production, and low weight to minimize overall vehicle mass.

The automobile composites industry has an indisputable promising future. Expecting advancements in technology and production techniques, composite materials can increasingly replace steel and aluminum as raw materials in many components. A virtual network of automotive composites producers and researchers has been established to efficiently carry out the research. Simultaneously, the virtual network will unite all industry professionals, in order to integrate all aspects of the automotive composites value chain and propel the industry and materials towards widespread acceptability.

Given the abundance of automakers in China, it is one of the major markets in the Asia Pacific region for automotive composites. China achieved the highest vehicle production in 2021 and has the distinction of accounting for over 50% of the global electric car sales, which amounted to 6.6 million, according to the IEA database. With its concentration of major global automakers, the Asia Pacific region has significant potential to dominate the automotive composite market.

Market Dynamics

Growth In The Demand For Lightweight And Fuel-Efficient Automobiles:

The automotive sector has increasingly prioritised the consideration of vehicle weight due to its direct influence on driving dynamics and fuel efficiency. Given the exorbitant price of possible lightweight solutions and the limited inclination of consumers to invest in weight reduction in the automotive industry, the use of expensive lightweight materials has thus far been restricted.

Governments globally are enforcing strict emission rules and intending to establish even more rigorous emissions requirements in the next years, thereby highlighting the growing significance of lightweight materials. Fiber accounting for 50% of the volume in a standard car contributes just 10% to the overall weight. Regulatory requirements in the United States require that the average fuel economy criterion must achieve a minimum of 54.5 miles per gallon by 2025.

India, being a mileage-sensitive market, presents a lucrative opportunity for composites due to the increasing need for enhanced fuel efficiency in automobiles. This can be accomplished by the use of various composite compositions. While composites have the potential to generate significant economic output in the country, the expenses related to the research and development of these composites in automobiles can hinder market growth.

Given the fast rise in demand for lightweight automobiles in emerging nations, the carbon fiber composites market is expected to experience significant growth.

High Costs and Recycling Challenges: Key Restraints in the Automotive Composites Industry:

The use of composites has been exponentially increasing in the production of diverse vehicle components including exterior, interior, chassis, and powertrain. Still, the exorbitant expenses associated with processing and manufacturing restrict the application of composites. Thus, it is imperative to employ certain instruments to precisely ascertain the expenses in the initial phases to minimize the total cost linked to it. Despite the increasing need for durable and lightweight goods, the exorbitant price of composites is constraining the automotive composite industry. Given the exorbitant price of composites, end consumers strongly favor using conventional metal items.

Recyclability issues in the automobile composites industry are more complex and intricate than those faced in recycling metallic materials. One explanation for this is because the fiber reinforcement components are frequently connected to other components by means of metal fixing. The main challenge lies in the intricacy involved in dismantling, separating, and de-bonding from vehicular components for recycling purposes. Moreover, although the component can be isolated from one another, it is challenging to individually extract the constituent components from the composite. This is because composites consist of a combination of dissimilar materials and are not capable of being melted down and recycled. Therefore, the diverse recycling regulations governing the plastic and composites industry, together with their inefficient recycling technologies, are impeding the market.

Market Segment Analysis

The global Automotive Composite Materials Market is segmented based on fiber type, resin type, manufacturing process, application, vehicle type and region.

Based On The Fiber Type, Glass Fiber Composites Dominated The Market:

Glass fiber composites have extensive application in the automotive sector owing to their features including exceptional strength, stiffness, flexibility, and resistance to chemical damage. There has been a significant surge in the demand for lightweight materials in recent years to enhance fuel efficiency and reduce emissions. Thanks to its lower cost compared to carbon and natural fibers, glass fiber composites find extensive application in the automobile sector.

Furthermore, automobile body components like engine hoods, storage tanks, and dashboards are produced utilizing natural fiber composites in order to minimize the reliance on other metals like steel and aluminum, and to encourage the usage and expansion of bio-based materials in the automotive sector.

In February 2020, SGL Carbon is set to unveil a novel composite battery container, motivated by the demand for adaptable chassis platforms. In addition to the carbon fiber battery housing, the company has also unveiled their leaf spring constructed from a glass fiber composite.

Profound shifts in the manufacturing of leisure cars had a beneficial effect on the sales of automotive composites. The decline in sales of automobile vehicles was accompanied by a significant increase in demand for lightweight vehicles, which in turn drove the sales of automotive composites. The increasing requirement for improved fuel efficiency and fashionable interior designs will drive the market demand for glass fiber composites.

Market Geographical Share

The Automotive Composite Materials Market In Asia Pacific Is Estimated To Account For The Largest Share:

Competitive advantage resulting from low raw material and production costs, coupled with consistent growth in car production, is expected to drive the expansion of the regional market.

Compliance with rigorous pollution standards in China, India, and Japan is anticipated to decrease the vehicle's weight, therefore facilitating fuel efficiency. Weight reduction in vehicles can be achieved by substituting heavy metal components with composites. Furthermore, government programmes such as "Make in India" is anticipated to enhance the expansion of the automotive sector in India, thereby stimulating the need for automotive composites in the next years.

Given the abundance of automakers in China, it is one of the major markets in the Asia Pacific region for automotive composites. In 2021, China achieved the highest production of vehicles and achieved the noteworthy milestone of accounting for over 50% of the global electric vehicle sales, which amounted to 6.6 million according to the IEA. Considering its status as the central location for major global automakers, Asia Pacific has significant potential to dominate the automotive composite market in the projected timeframe. The usage of lightweight materials to enhance fuel efficiency has compelled the incorporation of composites in automotive applications, thereby stimulating the demand for these products in the region.

Russia-Ukraine War Impact Analysis

The prolonged conflict between Russia and Ukraine has significantly affected the global automotive composite materials industry, specifically by affecting the supply chain and the pricing of raw materials. Owing to Russia's substantial position as a major supplier of essential raw materials like aluminum and titanium, the continuing conflict has led to interruptions in supply routes and consequent price hikes. Nevertheless, the automotive composite sector in the Asia Pacific region, namely in China and India, remains strong. Due to its cost-effective raw materials and production infrastructure, together with its growing automotive sector, the region has a distinct advantage that has allowed it to mitigate some of these global shocks. Aside from China's prevailing position in electric vehicle production, the "Make in India" initiative enhances the region's ability to exert substantial influence in the global market.

Moreover, the enforcement of stringent pollution rules in China, India, and Japan is accelerating the adoption of lightweight composite materials to enhance automobile fuel efficiency, hence boosting the market for these materials despite geopolitical challenges. The Asia Pacific area, hosting several manufacturers and accounting for over 50% of global electric vehicle sales in 2021, is continuously and effectively leveraging its status as a prominent manufacturing hub. The enduring demand, driven by regulatory limitations and the highly developed industrial infrastructure in the region, ensures the durability of the automotive composite materials industry, even in the face of external disturbances resulting from the ongoing conflict.

By Fiber Type

Glass Fiber

Carbon Fiber

Others

By Resin Type

Thermoset

Thermoplastic

By Manufacturing Process

Compression Molding

Injection Molding

Resin Transfer Molding (RTM)

Others

By Application

Exterior

Interior

Powertrain & Chassis

Battery Enclosures

By Vehicle Type

Non-electric

Electric

By Region

North America

US

Canada

Mexico

Europe

Germany

UK

France

Italy

Russia

Rest of Europe

South America

Brazil

Argentina

Rest of South America

Asia-Pacific

China

India

Japan

Australia

Rest of Asia-Pacific

Middle East and Africa

Key Developments

In February 2023, Toray Industries Inc. pioneered a quick integration molding method specifically designed for mobility components made from Carbon Reinforced Fiber Plastic (CRFP). This innovation will facilitate the molding of CFRP mobility components more efficiently and rapidly than the conventional molding setup.

In February 2022, Teijin Automotive Technologies, the primary entity responsible for the automotive composites division of the Teijin Group, initiated the building of two new facilities and one factory in China. This initiative aims to address the increasing need for composites resulting from the expanding electric vehicles industry.

In February 2022, Teijin Limited formed a cooperative venture with Fuji Design Co. Ltd., a Japanese producer of recycled carbon fibers, to provide, market, and manufacture carbon fiber reinforced products (CFRP) made from recycled carbon fiber.

Market Competitive Landscape

The major global players in the market include Toray Industries Inc., SGL Carbon, Teijin Limited, Mitsubishi Chemical Holding Corporation, Hexcel Corporation, Owen Cornings, Solvay SA, Gurit, UFP Technologies Ltd., Huntsman Corporation, and Hexion

Why Purchase the Report?

To visualize the global Automotive Composite Materials Market segmentation based on fiber type, resin type, manufacturing process, application, vehicle type and region, as well as understand key commercial assets and players.

Identify commercial opportunities by analyzing trends and co-development.

Excel data sheet with numerous data points of the Automotive Composite Materials Market with all segments.

PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.

Product mapping available as Excel consisting of key products of all the major players.

The global Automotive Composite Materials Market report would provide approximately 86 tables, 85 figures, and 224 pages.

Target Audience 2024

Manufacturers/ Buyers

Industry Investors/Investment Bankers

Research Professionals

Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Fiber Type
  • 3.2. Snippet by Resin Type
  • 3.3. Snippet by Manufacturing Process
  • 3.4. Snippet by Application
  • 3.5. Snippet by Vehicle Type
  • 3.6. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Growth in the demand for lightweight and fuel-efficient automobiles
    • 4.1.2. Restraints
      • 4.1.2.1. High Costs and Recycling Challenges: Key Restraints in the Automotive Composites Industry
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. By Fiber Type

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber Type
    • 6.1.2. Market Attractiveness Index, By Fiber Type
  • 6.2. Glass Fiber *
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Carbon Fiber
  • 6.4. Others

7. By Resin Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Offering
    • 7.1.2. Market Attractiveness Index, By Offering
  • 7.2. Thermoset*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Thermoplastic

8. By Manufacturing Process

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle Type
    • 8.1.2. Market Attractiveness Index, By Vehicle Type
  • 8.2. Compression Molding *
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Injection Molding
  • 8.4. Resin Transfer Molding (RTM)
  • 8.5. Others

9. By Application

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2. Market Attractiveness Index, By Application
  • 9.2. Exterior *
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Interior
  • 9.4. Powertrain & Chassis
  • 9.5. Battery Enclosures

10. By Vehicle Type

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle Type
    • 10.1.2. Market Attractiveness Index, By Vehicle Type
  • 10.2. Non-electric *
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Electric

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Resin Type
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Manufacturing Process
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle Type
    • 11.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.8.1. The US
      • 11.2.8.2. Canada
      • 11.2.8.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Resin Type
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Manufacturing Process
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle Type
    • 11.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.8.1. Germany
      • 11.3.8.2. UK
      • 11.3.8.3. France
      • 11.3.8.4. Spain
      • 11.3.8.5. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Resin Type
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Manufacturing Process
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle Type
    • 11.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.8.1. Brazil
      • 11.4.8.2. Argentina
      • 11.4.8.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Resin Type
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Manufacturing Process
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle Type
    • 11.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.8.1. China
      • 11.5.8.2. India
      • 11.5.8.3. Japan
      • 11.5.8.4. Australia
      • 11.5.8.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fiber Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Resin Type
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Manufacturing Process
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle Type

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Toray Industries Inc.*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. SGL Carbon
  • 13.3. Teijin Limited
  • 13.4. Mitsubishi Chemical Holding Corporation
  • 13.5. Hexcel Corporation
  • 13.6. Owen Corning
  • 13.7. Solvay SA
  • 13.8. Gurit
  • 13.9. UFP Technologies Ltd.
  • 13.10. Huntsman Corporation
  • 13.11. Hexion (*LIST NOT EXHAUSTIVE)

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us