封面
市場調查報告書
商品編碼
1560880

全球綠氫電解槽市場 - 2024 - 2031

Global Green Hydrogen Electrolyzer Market - 2024 - 2031

出版日期: | 出版商: DataM Intelligence | 英文 210 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

報告概述

2023年,全球綠色氫電解槽市場規模達22億美元,預計2031年將達到179億美元,2024-2031年預測期間複合年成長率為29.9%。

電解槽是一種旨在透過電解生產氫氣的技術設備,電解是利用電能有效地將水分解為其組成成分氫和氧分子的過程。隨著全球各產業和政府轉向脫碳,綠色氫電解槽市場正經歷強勁成長。

2023 年,印度政府啟動了生產掛鉤激勵 (PLI) 計劃,以促進國內電解槽的製造。該舉措是更廣泛的綠氫轉型策略干預(SIGHT)計畫的關鍵組成部分,該計畫旨在將印度定位為電解槽生產的全球領導者。

歐盟制定了雄心勃勃的氣候目標,包括到2030 年將溫室氣體排放量減少至少55%,到2050 年實現氣候中和。來實現生產綠色氫氣。例如,德國的GET H2 Nukleus計畫重點在於2030年建造一座700兆瓦的電解槽廠用於氫氣設施。

市場動態

對清潔能源解決方案的需求不斷增加

全球向永續和低碳能源的轉變是電解槽市場的重要驅動力。政府和產業越來越認知到綠色氫在難以減少的產業脫碳中的作用。

歐盟承諾在 2050 年實現氣候中和,這導致了對氫基礎設施的大量投資。歐盟氫能戰略的目標是到 2030 年生產 1,000 萬噸可再生氫,從而推動電解槽的需求。

綠氫能投資蓬勃發展

綠氫的多功能性正在釋放各領域的廣泛應用,包括交通、工業流程和能源生產。這推動了對電解槽的需求。在交通運輸領域,氫燃料電池越來越受到關注,日本和德國等國家處於將氫能納入公共運輸系統的最前線。

全球氫計畫投資也在激增。 2023年,投資達5,700億美元,較上年成長31%。這一成長凸顯了對氫作為清潔能源轉型關鍵組成部分的不斷擴大的承諾。

安全問題與公眾認知挑戰

氫氣是一種高度易燃氣體,在生產、儲存和運輸過程中存在安全風險。雖然這些風險可以透過適當的設計和處理程序來管理,但它們仍然會限制氫電解槽在某些應用中的廣泛採用。

2019年,挪威Kjorbo的一個加油站的儲氫槽發生爆炸。這起事件是由儲存設施洩漏引起的,引發了幾公里外的大規模爆炸,造成兩人受傷,並促使全國各地的加氫站暫時關閉。這起事件導致大眾對氫安全的信心大幅下降,事件發生後幾個月內挪威氫汽車銷量暴跌 70% 以上。

細分市場分析

全球綠色氫電解槽市場根據類型、容量、應用和地區進行細分。

操作靈活性和緊湊設計推動 PEM 電解槽的發展

預計在 2024 年至 2031 年預測期內,聚合物電解質膜 (PEM) 電解槽將成為主導細分市場,佔超過 35% 的市場佔有率。這一顯著成長是由該技術與再生能源有效整合的能力推動的,使得 PEM 電解槽因其高效率和對波動功率輸入的適應性而成為市場的主導者。

與傳統鹼性電解槽相比,PEM 電解槽具有明顯的優勢,包括卓越的效率(尤其是在較小規模的情況下)以及有利於城市和空間受限應用的緊湊設計。這些功能不僅提高了它們的運作效率,而且使它們成為新興的綠氫產業的首選。

市場地域佔有率

亞太地區主要經濟體的需求不斷成長

亞太地區預計將主導全球綠色氫電解槽市場,佔據相當大的市場佔有率。中國、印度和澳洲佔據了亞太地區綠氫需求的大部分。中國引領全球綠氫市場,產量達2,000萬噸,佔全球產量的顯著佔有率。

同樣,印度的目標是到 2070 年實現淨零排放,並推出了生產掛鉤激勵 (PLI) 計劃以促進電解槽的本地製造。在大量投資和該國對清潔能源的承諾的推動下,印度的綠色氫電解槽市場預計將從 2030 年的 40 億美元成長到 2050 年的 780 億美元。

市場競爭格局

市場的主要全球參與者包括 Bloom Energy、Cummins Inc.、Green Hydrogen Systems、H-TEC SYSTEMS GmbH、Hysata、ITM Power PLC、Nel ASA、Next Hydrogen、Ohmium 和西門子 AG。

永續性分析

與化石燃料生產的氫氣相比,透過電解槽由再生能源生產的綠色氫氣可減少高達 95% 的溫室氣體排放。據氫能委員會稱,與傳統方法相比,生產 1 公斤綠色氫氣可減少約 10 公斤二氧化碳排放量

綠氫提供了高密度的儲能解決方案。典型的 PEM 電解槽系統可將高達 80% 的電力輸入轉換為氫能,而電池等傳統儲能技術的轉換率約為 60%。在英國,「HyDeploy」計畫利用綠氫與電網中的天然氣混合,展示了氫如何穩定能源供應並增強再生能源的整合

電解槽有助於在高產量期間吸收多餘的可再生能源,並將其以氫氣的形式儲存。此能力對於平衡電網和確保再生能源的穩定供應至關重要。例如,德國「H2未來」計畫將電解槽與風電結合,利用剩餘能源,支持電網穩定

俄羅斯-烏克蘭戰爭影響

戰爭導致全球能源價格大幅波動,尤其是天然氣價格。天然氣是透過蒸汽甲烷重整(SMR)生產氫氣的重要原料,其價格波動直接影響氫氣生產成本。隨著天然氣價格飆升,生產氫氣的成本增加,使得綠氫計畫在經濟上較不可行。衝突初期,歐洲天然氣價格飆升超過200%。這種急劇增加使得氫氣生產更加昂貴,並對依賴傳統能源的氫氣專案帶來了財務壓力。

此外,這場戰爭導致全球供應鏈嚴重中斷,特別影響了電解槽製造所需的原料和零件的採購。電解槽對於生產綠色氫氣至關重要,需要各種特殊材料,包括稀土金屬和精密零件。由於貿易限制、基礎設施受損和後勤挑戰,戰爭阻礙了這些材料的流動。

類型

聚合物電解質膜(PEM)電解槽

鹼性水電解槽

固態氧化物電解槽

容量

低(高達 500kW)

中型(500kW-2,000kW)

高(2,000kW以上)

應用

發電廠

鋼鐵廠

電子和光伏

工業氣體

FCEV 的儲能或燃料

電轉氣

活力

其他

地區

北美洲

我們

加拿大

墨西哥

歐洲

德國

英國

法國

義大利

西班牙

歐洲其他地區

南美洲

巴西

阿根廷

南美洲其他地區

亞太

中國

印度

日本

澳洲

亞太其他地區

中東和非洲

主要進展

2024 年,西門子能源公司獲得了一份契約,為德國埃姆登的一家綠色氫工廠提供 280 兆瓦電解系統,該工廠由公用事業公司 EWE 營運。該廠將於 2027 年啟動,每年將生產高達 26,000 噸綠色氫氣,每年可望減少鋼鐵等產業約 80 萬噸二氧化碳排放量。西門子能源公司的 PEM 技術以其再生能源的效率和靈活性而聞名,該技術將在其柏林千兆瓦工廠生產的電堆中得到應用。

作為與張家口市交通建設投資控股集團合資企業的一部分,殼牌將於 2022 年在中國張家口啟動全球最大的氫電解槽之一的營運。這座 20 兆瓦電解槽在 2022 年冬季奧運前開始生產,為賽事使用的燃料電池車提供綠色氫氣。該合資公司計劃在未來兩年內將電解槽產能擴大至60兆瓦。

為什麼購買報告?

根據類型、容量、應用和區域可視化全球綠色氫電解槽市場細分,並了解關鍵商業資產和參與者。

透過分析趨勢和共同開發來識別商業機會。

Excel資料表包含所有細分市場的綠色氫電解槽市場的大量資料點。

PDF 報告由詳盡的質性訪談和深入研究後的綜合分析組成。

產品映射以 Excel 形式提供,包含所有主要參與者的關鍵產品。

全球綠色氫電解槽市場報告將提供約65張表格、58張圖表和210頁。

2024 年目標受眾

製造商/買家

產業投資者/投資銀行家

研究專業人員

新興公司

目錄

第 1 章:方法與範圍

第 2 章:定義與概述

第 3 章:執行摘要

第 4 章:動力學

  • 影響因素
    • 促進要素
      • 對清潔能源解決方案的需求不斷增加
      • 綠氫能投資蓬勃發展
    • 限制
      • 安全問題與公眾認知挑戰
    • 機會
    • 影響分析

第 5 章:產業分析

  • 波特五力分析
  • 供應鏈分析
  • 定價分析
  • 監管分析
  • 俄烏戰爭影響分析
  • DMI 意見

第 6 章:按類型

  • 聚合物電解質膜(PEM)電解槽
  • 鹼性水電解槽
  • 固態氧化物電解槽

第 7 章:按容量

  • 低(高達 500kW)
  • 中型(500kW-2,000kW)
  • 高(2,000kW以上)

第 8 章:應用

  • 發電廠
  • 鋼鐵廠
  • 電子和光伏
  • 工業氣體
  • FCEV 的儲能或燃料
  • 電轉氣
  • 其他

第 9 章:永續性分析

  • 環境分析
  • 經濟分析
  • 治理分析

第 10 章:按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
      • 德國
      • 英國
      • 法國
      • 義大利
      • 西班牙
      • 歐洲其他地區
    • 南美洲
      • 巴西
      • 阿根廷
      • 南美洲其他地區
  • 亞太
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 亞太其他地區
  • 中東和非洲

第 11 章:競爭格局

  • 競爭場景
  • 市場定位/佔有率分析
  • 併購分析

第 12 章:公司簡介

  • Bloom Energy
    • 公司概況
    • 類型組合和描述
    • 財務概覽
    • 主要進展
  • Cummins Inc.
  • Green Hydrogen Systems
  • H2U Technologies, Inc.
  • Hysata
  • ITM Power PLC
  • Nel ASA
  • Next Hydrogen
  • Ohmium
  • Siemens AG (*LIST NOT EXHAUSTIVE)

第 13 章:附錄

簡介目錄
Product Code: EP8618

Report Overview

Global Green Hydrogen Electrolyzer Market reached US$ 2.20 billion in 2023 and is expected to reach US$ 17.9 billion by 2031, growing with a CAGR of 29.9% during the forecast period 2024-2031.

The electrolyzer is a technological apparatus designed to produce hydrogen through electrolysis, a process that efficiently separates water into its constituent hydrogen and oxygen molecules using electrical energy. As industries and governments globally shift toward decarbonization, the green hydrogen electrolyzer market is experiencing robust growth.

In 2023, the government of India launched a Production Linked Incentive (PLI) scheme to bolster the domestic manufacturing of electrolyzers. This initiative is a key component of the broader Strategic Interventions for Green Hydrogen Transition (SIGHT) program, which seeks to position India as a global leader in electrolyzer production.

The European Union has set ambitious climate targets, including reducing greenhouse gas emissions by at least 55% by 2030 and achieving climate neutrality by 2050. It has driven the adoption of renewable energy sources and the development of a hydrogen economy, which relies on electrolyzers to produce green hydrogen. For instance, Germany's GET H2 Nukleus project focuses on building a 700 MW electrolyzer plant for hydrogen production facility by 2030.

Market Dynamics

Increasing Demand for Clean Energy Solutions

The global shift towards sustainable and low-carbon energy sources is a significant driver for the electrolyzer market. Governments and industries are increasingly recognizing the role of green hydrogen in decarbonizing hard-to-abate sectors.

The European Union's commitment to achieving climate neutrality by 2050 has led to substantial investments in hydrogen infrastructure. The EU Hydrogen Strategy aims for 10 million tons of renewable hydrogen production by 2030, driving demand for electrolyzers.

Booming Investment for Green Hydrogen

Green hydrogen's versatility is unlocking a wide range of applications across various sectors, including transportation, industrial processes and energy generation. This is driving up the demand for electrolyzers. In the transportation sector, hydrogen fuel cells are gaining traction, with countries like Japan and Germany at the forefront of efforts to integrate hydrogen into public transport systems.

Global investments in hydrogen projects are also surging. In 2023, investments reached $570 billion, a 31% increase from the previous year. This growth underscores the expanding commitment to hydrogen as a key component of the clean energy transition.

Safety Concerns and Public Perception Challenges

Hydrogen is a highly flammable gas, which presents safety risks during its production, storage and transportation. While these risks can be managed with proper design and handling procedures, they can still act as a constraint on the widespread adoption of hydrogen electrolyzers in certain applications.

In 2019, a hydrogen storage tank exploded at a fueling station in Kjorbo, Norway. The incident, caused by a leak in the storage facility, resulted in a massive explosion that was felt several kilometers away, causing injuries to two people and prompting the temporary closure of hydrogen refueling stations across the country. This event led to a substantial decrease in public confidence in hydrogen safety, with hydrogen vehicle sales in Norway plummeting by over 70% in the months following the incident.

Market Segment Analysis

The global green hydrogen electrolyzer market is segmented based on type, capacity, application and region.

Operational Flexibility & Compact Design Drives PEM Electrolyzer Growth

The Polymer Electrolyte Membrane (PEM) electrolyzer is expected to be the dominant segment with over 35% of the market during the forecast period 2024-2031. The significant growth is driven by the technology's ability to efficiently integrate with renewable energy sources, making PEM electrolyzers a dominant player in the market due to their high efficiency and adaptability to fluctuating power inputs.

PEM electrolyzers offer distinct advantages over traditional alkaline electrolyzers, including superior efficiency, particularly at smaller scales and a compact design that is advantageous for urban and space-constrained applications. These features not only enhance their operational efficiency but also position them as a preferred choice in the burgeoning green hydrogen sector.

Market Geographical Share

Growing Demand from the Top Economies in Asia-Pacific

Asia-Pacific is expected to dominate the global green hydrogen electrolyzer market, covering over significant share in the market. China, India and Australia account for most of Asia-Pacific's green hydrogen demand. China leads the global green hydrogen market, accounting for a notable share of global production with a 20-million-ton output.

Similarly, India aims to achieve net zero emissions by 2070 and has introduced a Production-Linked Incentive (PLI) scheme to boost local manufacturing of electrolyzers. India's green hydrogen electrolyzer market is projected to grow from US$ 4 billion in 2030 to US$ 78 billion by 2050, driven by substantial investments and the country's commitment to clean energy.

Market Competitive Landscape

The major global players in the market include Bloom Energy, Cummins Inc., Green Hydrogen Systems, H-TEC SYSTEMS GmbH, Hysata, ITM Power PLC, Nel ASA, Next Hydrogen, Ohmium and Siemens AG.

Sustainability Analysis

Green hydrogen produced from renewable energy sources through electrolyzers can reduce greenhouse gas emissions by up to 95% compared to hydrogen produced from fossil fuels. According to the Hydrogen Council, producing 1 kg of green hydrogen can result in a reduction of approximately 10 kg of CO2 emissions compared to conventional methods

Green hydrogen provides a high-density energy storage solution. A typical PEM electrolyzer system can convert up to 80% of the electricity input into hydrogen energy, compared to around 60% for traditional energy storage technologies like batteries. In the UK, the "HyDeploy" project uses green hydrogen to blend with natural gas in the grid, demonstrating how hydrogen can stabilize the energy supply and enhance the integration of renewable energy sources

Electrolyzers help to absorb excess renewable energy during periods of high production and store it in the form of hydrogen. The capability is crucial for balancing the grid and ensuring a stable supply of renewable energy. For example, Germany's "H2 Future" project integrates electrolyzers with wind power to utilize surplus energy, supporting grid stability

Russia-Ukraine War Impact

The war has caused significant fluctuations in global energy prices, particularly natural gas. Natural gas is a crucial feedstock in the production of hydrogen through steam methane reforming (SMR) and its price volatility directly impacts the cost of hydrogen production. As natural gas prices soar, the cost of producing hydrogen increases, making green hydrogen projects less economically viable. During the initial phase of the conflict, natural gas prices in Europe skyrocketed by more than 200%. This sharp increase has made hydrogen production more expensive and has put financial pressure on hydrogen projects reliant on traditional energy sources.

Furthermore, this war has led to severe disruptions in global supply chains, particularly affecting the procurement of raw materials and components essential for the manufacturing of electrolyzers. Electrolyzers, which are crucial for producing green hydrogen, require various specialized materials, including rare earth metals and precision components. The war has hindered the flow of these materials due to trade restrictions, damaged infrastructure and logistical challenges.

Type

Polymer Electrolyte Membrane (PEM) electrolyzer

Alkaline Water Electrolyzer

Solid Oxide Electrolyzer

Capacity

Low (Up to 500kW)

Medium (500kW-2,000kW)

High (More than 2,000kW)

Application

Power Plants

Steel Plant

Electronics and Photovoltaics

Industrial Gases

Energy Storage or Fueling for FCEV's

Power to Gas

Energy

Others

Region

North America

US

Canada

Mexico

Europe

Germany

UK

France

Italy

Spain

Rest of Europe

South America

Brazil

Argentina

Rest of South America

Asia-Pacific

China

India

Japan

Australia

Rest of Asia-Pacific

Middle East and Africa

Key Developments

In 2024, Siemens Energy has secured a contract to supply a 280-megawatt electrolysis system for a green hydrogen plant in Emden, Germany, operated by utility EWE. Set to start in 2027, the plant will produce up to 26,000 tons of green hydrogen annually, potentially reducing CO2 emissions by around 800,000 tons per year in industries like steel. Siemens Energy's PEM technology, known for its efficiency and flexibility with renewable energy, will be utilized, with stacks produced at its Berlin gigawatt factory.

In 2022, Shell has launched operations at one of the world's largest hydrogen electrolyzers in Zhangjiakou, China, as part of a joint venture with Zhangjiakou City Transport Construction Investment Holding Group. The 20-megawatt electrolyzer, which began production ahead of the 2022 Winter Olympic Games, supplied green hydrogen for fuel cell vehicles used at the event. The joint venture plans to expand the electrolyzer capacity to 60 megawatts in the next two years.

Why Purchase the Report?

To visualize the global green hydrogen electrolyzer market segmentation based on type, capacity, application and region, as well as understand key commercial assets and players.

Identify commercial opportunities by analyzing trends and co-development.

Excel data sheet with numerous data points of the green hydrogen electrolyzer market with all segments.

PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.

Product mapping available as excel consisting of key products of all the major players.

The global green hydrogen electrolyzer market report would provide approximately 65 tables, 58 figures and 210 pages.

Target Audience 2024

Manufacturers/ Buyers

Industry Investors/Investment Bankers

Research Professionals

Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Capacity
  • 3.3. Snippet by Application
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Increasing Demand for Clean Energy Solutions
      • 4.1.1.2. Booming Investment for Green Hydrogen
    • 4.1.2. Restraints
      • 4.1.2.1. Safety Concerns and Public Perception Challenges
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. By Type

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 6.1.2. Market Attractiveness Index, By Type
  • 6.2. Polymer Electrolyte Membrane (PEM) electrolyzer
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Alkaline Water Electrolyzer
  • 6.4. Solid Oxide Electrolyzer

7. By Capacity

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 7.1.2. Market Attractiveness Index, By Capacity
  • 7.2. Low (Up to 500kW)
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Medium (500kW-2,000kW)
  • 7.4. High (More than 2,000kW)

8. Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Power Plants
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Steel Plant
  • 8.4. Electronics and Photovoltaics
  • 8.5. Industrial Gases
  • 8.6. Energy Storage or Fueling for FCEV's
  • 8.7. Power to Gas
  • 8.8. Others

9. Sustainability Analysis

  • 9.1. Environmental Analysis
  • 9.2. Economic Analysis
  • 9.3. Governance Analysis

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. US
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. UK
      • 10.3.6.3. France
      • 10.3.6.4. Italy
      • 10.3.6.5. Spain
      • 10.3.6.6. Rest of Europe
    • 10.3.7. South America
    • 10.3.8. Introduction
    • 10.3.9. Key Region-Specific Dynamics
    • 10.3.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.3.11. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 10.3.12. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.13. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.13.1. Brazil
      • 10.3.13.2. Argentina
      • 10.3.13.3. Rest of South America
  • 10.4. Asia-Pacific
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. China
      • 10.4.6.2. India
      • 10.4.6.3. Japan
      • 10.4.6.4. Australia
      • 10.4.6.5. Rest of Asia-Pacific
  • 10.5. Middle East and Africa
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. Bloom Energy*
    • 12.1.1. Company Overview
    • 12.1.2. Type Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. Cummins Inc.
  • 12.3. Green Hydrogen Systems
  • 12.4. H2U Technologies, Inc.
  • 12.5. Hysata
  • 12.6. ITM Power PLC
  • 12.7. Nel ASA
  • 12.8. Next Hydrogen
  • 12.9. Ohmium
  • 12.10. Siemens AG (*LIST NOT EXHAUSTIVE)

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us