封面
市場調查報告書
商品編碼
1575794

全球離子交換樹脂市場 - 2024-2031

Global Ion-Exchange Resins Market - 2024-2031

出版日期: | 出版商: DataM Intelligence | 英文 204 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

報告概述

全球離子交換樹脂市場2023年達到18.7億美元,預計2031年將達到26.2億美元,2024-2031年預測期間複合年成長率為4.31%。

離子交換樹脂 (IER) 是具有可逆化學反應的聚合物,其中溶解的離子從溶液中去除並被具有相同或相似電荷的其他離子取代。這些樹脂通常是小型多孔珠,用於各行業的純化、分離和淨化過程。在水處理、製藥和工業應用需求成長的推動下,離子交換樹脂市場正在穩步成長。

由於人們越來越重視水淨化和處理,特別是工業和市政應用,離子交換樹脂市場正在快速成長,這是一個主要貢獻者。美國環保署 (EPA) 和歐盟委員會已實施限制在水處理中使用有害化學物質的法規,促進採用離子交換樹脂作為更安全、更有效的替代品。

亞太地區在全球離子交換樹脂市場中佔有成長最快的佔有率。這項需求主要是由於市政和工業部門對清潔水的需求不斷成長,特別是在中國、日本和印度等國家。在亞太地區,世界衛生組織/聯合國兒童基金會供水、環境衛生和個人衛生聯合監測計畫 (JMP) 估計,有 5 億人無法獲得基本供水,這凸顯了離子交換樹脂的重要性。

市場動態

工業成長和發電需求

快速的工業化和發電,特別是在中國、印度和中東等新興市場,大大推動了對離子交換樹脂的需求。離子交換樹脂對於發電廠的水脫鹽至關重要,這對於蒸汽發生和渦輪機效率至關重要。這些地區再生能源專案和發電廠的擴張增加了對優質水的需求,進一步推動了市場成長。

根據國際能源總署預測,到2028年,再生能源將佔全球發電量的42%以上,其中風能和太陽能光電發電的佔有率將翻倍,達到25%。再生能源在清潔能源轉型中發揮關鍵作用。離子交換樹脂透過確保發電所需的優質水的可用性,在支持全球向清潔能源轉型方面發揮著至關重要的作用。

水處理需求不斷成長

水處理仍然是離子交換樹脂的主要應用。美國環保署 (EPA) 和歐盟水框架指令等環境機構制定的嚴格法規導致市政和工業水處理設施擴大採用這些樹脂。美國環保署對工業廢水排放提出了具體標準,增加了對離子交換樹脂等高效淨化技術的需求。

在歐洲,也正在進行大量投資來解決 PFAS 污染和改善飲用水品質。例如,義大利的 Acque del Chiampo SpA 在 2013 年至 2018 年間投資了約 56 萬歐元,用於安裝活性碳過濾器並改善供水網路。這鼓勵先進的水處理技術,包括離子交換樹脂

原料供應有限,且有替代技術的競爭

離子交換樹脂的生產通常依賴特定的石化材料,這些材料可能因地緣政治緊張或自然災害而面臨供應鏈中斷。這會影響樹脂的可用性和價格。根據美國能源資訊署(EIA)統計,2004年至2023年,原油成本約占美國公路柴油零售月平均價格的50%左右,這直接影響了離子交換樹脂的生產成本。

此外,替代技術(例如薄膜過濾和吸附方法)的存在可能會限制離子交換樹脂市場的成長。在某些應用中,替代方案可能更具成本效益或效率更高。

細分市場分析

全球離子交換樹脂市場根據類型、應用、最終用戶和地區進行細分。

太陽能需求激增以盡量減少生態足跡

由於對水淨化的迫切需求,發電是離子交換樹脂市場的重要驅動力。在發電廠,特別是使用蒸汽渦輪機的發電廠中,水質對於確保設備的效率和壽命至關重要。離子交換樹脂在除礦物質和軟化水方面發揮關鍵作用,有助於防止鍋爐和渦輪機結垢和腐蝕。

根據國際原子能總署的研究,對於火力發電廠,例如使用化石燃料或核能的火力發電廠,離子交換樹脂可確保水蒸汽迴路中冷卻水和補充水的脫礦質。這對於防止結垢至關重要,結垢會顯著影響傳熱效率。

此外,美國環保署和歐盟委員會等監管機構制定了越來越嚴格的水質標準,發電廠面臨著透過有效的水處理技術來滿足這些要求的壓力。離子交換樹脂對於實現發電設施所需的高純度至關重要,特別是在核電廠和火力發電廠中,即使是微量雜質也會導致嚴重的操作問題。

美國環保署 (EPA) 和國際原子能總署 (IAEA) 已發布技術文件,強調離子交換樹脂在這些過程中的關鍵功能。此類樹脂被認為是確保發電設施符合水質標準的標準技術,從而推動了市場需求。

市場地域佔有率

亞太地區的水資源短缺和監管支持

由於快速工業化、人口成長以及有效管理水資源的監管壓力日益增加,亞太地區擁有廣泛的水處理和淨化需求,因此在離子交換樹脂市場中佔據最大佔有率。亞洲基礎設施投資銀行(AIIB)強調,亞洲正面臨嚴重的水危機,亞洲五個國家的地下水開採量佔全球地下水開採量的50%以上。印度和中國等國家的農業和飲用水嚴重依賴地下水,導致水資源消耗率高。

亞洲開發銀行 (ADB) 估計,從 2017 年到 2030 年,亞洲發展中國家將需要約 8,000 億美元的投資用於水和衛生設施。離子交換樹脂在當代水處理廠中發揮著至關重要的作用,特別是在消除水源中的硬度、硝酸鹽和其他污染物方面。隨著政府和組織投資建造新的水處理廠或增強現有的水處理廠,對離子交換樹脂的需求正在增加。

市場競爭格局

市場的主要全球參與者包括杜邦、Lanxess AG、Purolite Corporation、Mitsubishi Chemical Holdings Corporation、Samyang Corporation、Ecolab、JACOBI RESINS、Sunresin New Materials Co. Ltd、Thermax Limited 和 ResinTech Inc。

永續性分析

在對環保產品和實踐的需求的推動下,離子交換樹脂市場越來越與永續發展計劃保持一致。隨著各行業面臨越來越大的減少碳足跡和滿足監管標準的壓力,一些製造商正在透過開發永續的樹脂選擇來應對。例如,朗盛提供其 Scopeblue 系列樹脂。這些樹脂由丙烯酸酯和聚苯乙烯等可再生資源製成,並已獲得國際永續發展和碳認證 (ISCC) PLUS 的批准。此認證保證材料是以負責任的方式獲得的,並且可以在生產的各個階段進行追蹤。朗盛表示,與傳統離子交換樹脂相比,其Scopeblue樹脂可減少高達76%的碳排放。

據美國水廠協會 (AWWA) 稱,對永續水處理解決方案的需求已成為自來水公司營運的首要任務。該組織強調了離子交換技術在改善水質和實現永續發展目標的重要性。水務公司可以透過採用永續樹脂來提高營運效率並減少環境足跡,這符合 AWWA 倡導永續水管理實踐的努力。

俄羅斯-烏克蘭戰爭影響

持續不斷的俄羅斯-烏克蘭戰爭對離子交換樹脂市場產生了重大影響,特別是在歐洲,地緣政治緊張局勢導致供應鏈中斷和原料價格波動。西方對俄羅斯的製裁導致獲得俄羅斯聚合物和其他化學品投入的機會減少,迫使歐洲製造商尋求替代供應商。

土耳其和中國等國家已成為俄羅斯材料的主要進口國,這使歐洲企業的供應情況更加複雜。這場衝突加劇了歐洲本已高企的通貨膨脹,特別是化學工業。能源成本大幅上漲起到了至關重要的作用;依賴天然氣和石油的製造業務費用激增是2022年衝突引發的能源危機的直接結果。

按類型

陽離子交換樹脂

強酸性陽離子樹脂

弱酸性陽離子樹脂

陰離子交換樹脂

強鹼性陰離子樹脂

弱鹼性陰離子樹脂

其他

吸附樹脂

螯合樹脂

混床樹脂

其他

按申請

非水

終端用戶

發電

化學品和肥料

食品和飲料

電氣和電子

製藥

生活水和廢水處理

紙和紙漿

其他

地區

北美洲

我們

加拿大

墨西哥

歐洲

德國

英國

法國

義大利

西班牙

歐洲其他地區

南美洲

巴西

阿根廷

南美洲其他地區

亞太

中國

印度

日本

澳洲

亞太其他地區

中東和非洲

主要進展

2024 年 4 月,美國環保署最終確定了國家主要飲用水法規 (NPDWR),設定了飲用水中六種 PFAS 化合物的最大污染物含量 (MCL),範圍為每公升 4 至 10 奈克。這項嚴格的法規推動了對有效 PFAS 去除技術的需求,而離子交換樹脂 (IEX) 正在成為現有飲用水處理廠 (DWTP) 的一種經濟高效的解決方案

2024年2月,Thermax Limited以900萬美元收購TSA Process Equipments,增強其在製程設備領域的能力,特別是在能源和環境解決方案方面的能力。此次策略性收購預計將加強 Thermax 的產品組合和市場能力,這可能會影響其在離子交換樹脂市場的成長和能力。

2024年4月,朗盛推出了Lewatit UltraPure,這是一系列新的離子交換樹脂牌號,專為水處理和質子交換膜(PEM)電解應用而設計。新的Lewatit UltraPure牌號,包括1242 MD(強鹼陰離子交換樹脂)、1212 MD(強酸陽離子交換樹脂)和1295 MD,旨在最大限度地減少總有機碳水平,從而支持PEM系統的完整性並推進氫基能源解決方案。

為什麼購買報告?

根據類型、應用、最終用戶和地區可視化全球離子交換樹脂市場細分。

透過分析趨勢和共同開發來識別商業機會。

Excel 電子表格包含離子交換樹脂市場的綜合資料集,涵蓋各個細分市場。

PDF 報告由詳盡的質性訪談和深入研究後的綜合分析組成。

產品映射以 Excel 形式提供,包含所有主要參與者的關鍵產品。

全球離子交換樹脂市場報告將提供約 62 個表格、56 張圖表和 204 頁。

2024 年目標受眾

製造商/買家

產業投資者/投資銀行家

研究專業人員

新興公司

目錄

第 1 章:方法與範圍

第 2 章:定義與概述

第 3 章:執行摘要

第 4 章:動力學

  • 影響因素
    • 促進要素
      • 工業成長和發電需求
      • 水處理需求不斷成長
    • 限制
      • 原料供應有限,且有替代技術的競爭
    • 機會
    • 影響分析

第 5 章:產業分析

  • 波特五力分析
  • 供應鏈分析
  • 定價分析
  • 監管分析
  • 俄烏戰爭影響分析
  • DMI 意見

第 6 章:COVID-19 分析

第 7 章:按類型

  • 陽離子交換樹脂
    • 強酸性陽離子樹脂
    • 弱酸性陽離子樹脂
  • 陰離子交換樹脂
    • 強鹼性陰離子樹脂
    • 弱鹼性陰離子樹脂
  • 其他

第 8 章:按申請

  • 非水

第 9 章:最終用戶

  • 發電
  • 化學品和肥料
  • 食品和飲料
  • 電氣和電子
  • 製藥
  • 生活及廢水處理
  • 紙和紙漿
  • 其他

第 10 章:永續性分析

  • 環境分析
  • 經濟分析
  • 治理分析

第 11 章:按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
      • 德國
      • 英國
      • 法國
      • 義大利
      • 西班牙
      • 歐洲其他地區
    • 南美洲
      • 巴西
      • 阿根廷
      • 南美洲其他地區
  • 亞太
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 亞太其他地區
  • 中東和非洲

第 12 章:競爭格局

  • 競爭場景
  • 市場定位/佔有率分析
  • 併購分析

第 13 章:公司簡介

  • DuPont
    • 公司概況
    • 類型組合和描述
    • 財務概覽
    • 主要進展
  • Lanxess AG
  • Purolite Corporation
  • Mitsubishi Chemical Holdings Corporation
  • Samyang Corporation
  • Ecolab
  • JACOBI RESINS
  • Sunresin New Materials Co.Ltd.
  • Thermax Limited
  • ResinTech Inc. (LIST NOT EXHAUSTIVE)

第 14 章:附錄

簡介目錄
Product Code: CH647

Report Overview

Global Ion-Exchange Resins Market reached US$ 1.87 billion in 2023 and is expected to reach US$ 2.62 billion by 2031, growing with a CAGR of 4.31% during the forecast period 2024-2031.

Ion-exchange resins (IERs) are polymers with reversible chemical reactions where dissolved ions are removed from the solution and replaced with other ions of the same or similar electrical charge. These resins are typically small, porous beads used for purification, separation and decontamination processes in various industries. The market for ion exchange resins is growing steadily, driven by increased demand in water treatment, pharmaceuticals and industrial applications.

The ion-exchange resins market is growing rapidly due to the increasing emphasis on water purification and treatment, particularly for industrial and municipal applications, is a major contributor. The Environmental Protection Agency (EPA) in US and the European Commission have implemented regulations that restrict the use of harmful chemicals in water treatment, promoting the adoption of ion-exchange resins as a safer and more efficient alternative.

Asia-Pacific holds the fastest-growing share in the global ion-exchange resins market. The demand is primarily fueled by the increasing need for clean water in municipal and industrial sectors, especially in countries such as China, Japan and India. In Asia-Pacific, the WHO/UNICEF Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (JMP) estimates that 500 million people lack access to a basic water supply, highlighting the importance of ion-exchange resins.

Market Dynamics

Industrial Growth and Power Generation Needs

Rapid industrialization and power generation, particularly in emerging markets like China, India and the Middle East significantly drive the demand for ion-exchange resins. Ion-exchange resins are essential in power plants for water demineralization, which is crucial for steam generation and turbine efficiency. The expansion of renewable energy projects and power plants in these regions increases the need for high-quality water, further fueling market growth.

According to the International Energy Agency, in 2028, renewable energy sources account for over 42% of global electricity generation, with the share of wind and solar PV doubling to 25%. Renewables play a critical role in clean energy transitions. Ion-exchange resins play a vital role in supporting the global transition to clean energy by ensuring the availability of high-quality water for power generation.

Rising Demand for Water Treatment

Water treatment remains the primary application for ion-exchange resins. Stringent regulations set by environmental agencies, such as US Environmental Protection Agency (EPA) and the European Union's Water Framework Directive, have led to increased adoption of these resins in both municipal and industrial water treatment facilities. The EPA requires specific standards for industrial water discharge, increasing the need for efficient purification technologies such as ion-exchange resins.

In Europe, significant investments are also being made to address PFAS contamination and improve drinking water quality. For instance, Italy involved Acque del Chiampo S.p.A., which invested approximately EUR 560,000 between 2013 and 2018 to install activated carbon filters and improve their water supply network. This encourages advanced water treatment technologies, including ion-exchange resins

Limited Availability of Raw Materials with Competition from the Presence of Alternative Technologies

The production of ion-exchange resins often relies on specific petrochemical-based materials, which may face supply chain disruptions due to geopolitical tensions or natural disasters. This can affect the availability and price of resins. According to US Energy Information Administration (EIA), the cost of crude oil accounted for about 50% of the monthly average US retail on-highway diesel fuel prices from 2004 through 2023, which directly impacted the cost of ion-exchange resin production.

Furthermore, the presence of alternative technologies, such as membrane filtration and adsorption methods, can limit the growth of the ion-exchange resin market. The alternatives can be more cost-effective or efficient in certain applications.

Market Segment Analysis

The global ion-exchange resins market is segmented based on type, application, end-user and region.

Surge in Solar Energy Demand to Minimize Ecological Footprint

Power generation is a significant driver of the ion exchange resin market due to its crucial need for water purification. In power plants, especially those utilizing steam turbines, water quality is vital to ensure the efficiency and longevity of equipment. Ion exchange resins play a pivotal role in demineralizing and softening water, which helps prevent scaling and corrosion in boilers and turbines.

According to the research done by the International Atomic Energy Agency, for thermal power plants, such as those using fossil fuels or nuclear energy, ion exchange resins ensure the demineralization of cooling and make-up water in water-steam circuits. This is crucial to prevent scale formation, which can significantly impact heat transfer efficiency.

Furthermore, regulatory bodies such as the EPA and the European Commission set increasingly strict water quality standards, power plants are under pressure to meet these requirements through effective water treatment technologies. Ion exchange resins are integral in achieving the high levels of purity needed in power generation facilities, especially in nuclear and thermal plants, where even trace impurities can cause significant operational issues.

US Environmental Protection Agency (EPA) and the International Atomic Energy Agency (IAEA) have published technical documents emphasizing the critical function of ion exchange resins in these processes. Such resins are recognized as a standard technology for ensuring compliance with water quality standards in power generation facilities, hence, driving the market demand.

Market Geographical Share

Water Scarcity and Regulatory Support in Asia-Pacific

Asia-Pacific holds the largest share of the ion exchange resin market due to its extensive water treatment and purification needs, driven by rapid industrialization, population growth and increasing regulatory pressures to manage water resources effectively. The Asian Infrastructure Investment Bank (AIIB) highlights that Asia is facing a severe water crisis, with five Asian countries accounting for over 50% of global groundwater withdrawals. Countries such as India, and China rely heavily on groundwater for agriculture and drinking water, leading to significant depletion rates.

The Asian Development Bank (ADB) estimates that developing Asia will require around US$ 800 billion in investment for water and sanitation from 2017 to 2030. A significant investment is necessary to meet the increasing water demands of both urban and rural communities. Ion-exchange resins play a crucial role in contemporary water treatment plants, particularly in eliminating hardness, nitrates and other contaminants from water sources. The need for ion- exchange resins is increasing as governments and organizations invest in constructing new water treatment plants or enhancing current ones.

Market Competitive Landscape

The major global players in the market include DuPont, Lanxess AG, Purolite Corporation, Mitsubishi Chemical Holdings Corporation, Samyang Corporation, Ecolab, JACOBI RESINS, Sunresin New Materials Co. Ltd., Thermax Limited and ResinTech Inc.

Sustainability Analysis

The ion-exchange resin market is increasingly aligning with sustainability initiatives, driven by the need for environmentally friendly products and practices. As industries face growing pressure to reduce their carbon footprints and meet regulatory standards, several manufacturers are responding by developing sustainable resin options. For instance, LANXESS, provides its Scopeblue range of resins. These resins are made from renewable sources such as acrylate and polystyrene and have been approved by the International Sustainability and Carbon Certification (ISCC) PLUS. This certification guarantees that the materials are responsibly obtained and can be traced during all stages of production. LANXESS states that its Scopeblue resins can reduce carbon emissions by as much as 76% when compared to traditional ion-exchange resins.

According to the American Water Works Association (AWWA), the demand for sustainable water treatment solutions has become a priority in water utility operations. The importance of ion-exchange technologies in improving water quality and achieving sustainability objectives is highlighted by the organization. Water utilities can enhance their operational efficiency and decrease their environmental footprint by incorporating sustainable resins, in line with AWWA's efforts to advocate for sustainable water management practices.

Russia-Ukraine War Impact

The ongoing Russia-Ukraine war has significantly impacted the ion-exchange resin market, particularly in Europe, where geopolitical tensions have led to supply chain disruptions and fluctuating raw material prices. Western sanctions on Russia have led to decreased access to Russian polymers and other chemical inputs, pushing European manufacturers to seek alternative suppliers.

Countries such as Turkey and China have stepped in as key importers of Russian materials, further complicating the supply landscape for European firms. The conflict has worsened already high inflation in Europe, specifically in the chemical industry. The substantial increase in energy costs played a crucial role; the surge in expenses for manufacturing operations dependent on natural gas and petroleum was a direct result of the energy crisis in 2022 triggered by the conflict.

By Type

Cation Exchange Resins

Strong Acid Cation Resins

Weak Acid Cation Resins

Anion Exchange Resins

Strong Base Anion Resins

Weak Base Anion Resins

Others

Adsorbent Resins

Chelating Resins

Mixed Bed Resins

Others

By Application

Water

Non-water

End-User

Power Generation

Chemical and Fertilizer

Food and Beverage

Electrical and Electronics

Pharmaceutical

Domestic and waste water treatment

Paper and Pulp

Others

Region

North America

US

Canada

Mexico

Europe

Germany

UK

France

Italy

Spain

Rest of Europe

South America

Brazil

Argentina

Rest of South America

Asia-Pacific

China

India

Japan

Australia

Rest of Asia-Pacific

Middle East and Africa

Key Developments

In April 2024, the EPA finalized a National Primary Drinking Water Regulation (NPDWR) setting Maximum Contaminant Levels (MCLs) for six PFAS compounds in drinking water, ranging from 4 to 10 nanograms per liter. This stringent regulation is driving demand for effective PFAS removal technologies and ion exchange resin (IEX) is emerging as a cost-effective solution for existing drinking water treatment plants (DWTPs)

February 2024, Thermax Limited acquired TSA Process Equipments for US$ 9 million, enhancing its capabilities in the process equipment sector, particularly in energy and environment solutions. This strategic acquisition is expected to strengthen Thermax's product portfolio and market capabilities, potentially impacting its growth and capabilities in the ion exchange resin market.

April 2024, LANXESS launched Lewatit UltraPure, a new range of ion exchange resin grades designed for water treatment and Proton Exchange Membrane (PEM) electrolysis applications. The new Lewatit UltraPure grades, including 1242 MD (Strong Base Anion exchange resin), 1212 MD (Strong Acid Cation exchange resin) and 1295 MD, aim to minimize total organic carbon levels, thereby supporting the integrity of PEM systems and advancing hydrogen-based energy solutions.

Why Purchase the Report?

To visualize the global ion-exchange resin market segmentation based on type, application, end-user and region.

Identify commercial opportunities by analyzing trends and co-development.

Excel spreadsheet containing a comprehensive dataset of the ion-exchange resin market, covering all levels of segmentation.

PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.

Product mapping available as excel consisting of key products of all the major players.

The global ion-exchange resins market report would provide approximately 62 tables, 56 figures and 204 pages.

Target Audience 2024

Manufacturers/ Buyers

Industry Investors/Investment Bankers

Research Professionals

Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Application
  • 3.3. Snippet by End-User
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Industrial Growth and Power Generation Needs
      • 4.1.1.2. Rising Demand for Water Treatment
    • 4.1.2. Restraints
      • 4.1.2.1. Limited Availability of Raw Materials with Competition from the Presence of Alternative Technologies
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. Cation Exchange Resins*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
      • 7.2.2.1. Strong Acid Cation Resins
      • 7.2.2.2. Weak Acid Cation Resins
  • 7.3. Anion Exchange Resins
    • 7.3.1. Introduction
    • 7.3.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
      • 7.3.2.1. Strong Base Anion Resins
      • 7.3.2.2. Weak Base Anion Resins
  • 7.4. Others

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Water*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Non-water

9. By End-User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.1.2. Market Attractiveness Index, By End-User
  • 9.2. Power Generation*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Chemical and Fertilizer
  • 9.4. Food and Beverage
  • 9.5. Electrical and Electronics
  • 9.6. Pharmaceutical
  • 9.7. Domestic and wastewater treatment
  • 9.8. Paper and Pulp
  • 9.9. Others

10. Sustainability Analysis

  • 10.1. Environmental Analysis
  • 10.2. Economic Analysis
  • 10.3. Governance Analysis

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.6.1. US
      • 11.2.6.2. Canada
      • 11.2.6.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.6.1. Germany
      • 11.3.6.2. UK
      • 11.3.6.3. France
      • 11.3.6.4. Italy
      • 11.3.6.5. Spain
      • 11.3.6.6. Rest of Europe
    • 11.3.7. South America
    • 11.3.8. Introduction
    • 11.3.9. Key Region-Specific Dynamics
    • 11.3.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.11. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.12. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.13. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.13.1. Brazil
      • 11.3.13.2. Argentina
      • 11.3.13.3. Rest of South America
  • 11.4. Asia-Pacific
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.6.1. China
      • 11.4.6.2. India
      • 11.4.6.3. Japan
      • 11.4.6.4. Australia
      • 11.4.6.5. Rest of Asia-Pacific
  • 11.5. Middle East and Africa
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. DuPont*
    • 13.1.1. Company Overview
    • 13.1.2. Type Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Lanxess AG
  • 13.3. Purolite Corporation
  • 13.4. Mitsubishi Chemical Holdings Corporation
  • 13.5. Samyang Corporation
  • 13.6. Ecolab
  • 13.7. JACOBI RESINS
  • 13.8. Sunresin New Materials Co.Ltd.
  • 13.9. Thermax Limited
  • 13.10. ResinTech Inc. (LIST NOT EXHAUSTIVE)

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us