木質素生醫材料·生化的全球市場(2025年~2035年)
市場調查報告書
商品編碼
1565353

木質素生醫材料·生化的全球市場(2025年~2035年)

The Global Market for Lignin Biomaterials & Biochemicals 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 188 Pages, 28 Tables, 53 Figures | 訂單完成後即時交付

價格

木質素是僅次於纖維素的第二豐富的天然聚合物,在世界向可持續生物基材料的轉變中迅速變得越來越重要。木質素是紙漿造紙工業和生物精煉廠的副產品,是一種巨大的可再生資源,但歷史上一直未被充分利用。人們越來越關注減少對化石材料的依賴和推廣循環經濟解決方案,這增加了木質素作為多功能生物材料和有價值的生物化學品來源的潛力,引起了人們的關注。木質素生物材料和生物化學品的重要性在於它們能夠在多個行業中取代石油基產品。木質素結構複雜,富含芳香族化合物,使其成為有價值的化學品和材料的理想前體。木質素的潛在應用範圍從生物燃料和生物塑料到碳纖維和儲能材料,為汽車、建築、包裝和電子等行業提供了可持續的替代品。

木質素衍生產品的市場前景越來越光明。由於環境法規收緊、消費者對永續產品需求的增加以及木質素萃取和改質製程的技術進步等因素,全球木質素市場預計在未來幾年將顯著成長。碳纖維和芳香化學品等高價值應用由於其顯著的環境效益和相對於傳統材料的性能優勢而特別有望增長。

隨著世界各地的工業尋求石油基產品的可持續替代品,木質素正在成為一種具有多種應用前景的生物基材料。

本報告針對全球木質素生物材料和生化產品市場進行研究和分析,提供市場規模和預測、區域市場動態、未來前景、公司簡介等。

目錄

第1章 調查手法

第2章 簡介

  • 所謂木質素
    • 木質素結構
  • 木質素:各類型
    • 含硫木質素
    • 來自生物精煉製程的無硫木質素
  • 特性
  • 木質纖維素生物煉製廠
  • 市場與用途
  • 市場課題

第3章 木質素生產流程

  • 原料的事前處理
  • 轉換流程
    • 熱化學的轉換
    • 化學的轉換
    • 生物學的轉換
    • 電化學轉換
  • 木質磺酸鹽
    • 概要
    • SWOT分析
  • 硫酸鹽木質素
    • 概要
    • LignoBoost流程
    • LignoForce法
    • 連續液體木質素回收,精製
    • A-Recovery+
    • SWOT分析
  • 鈉鹽木質素
    • 概要
    • SWOT分析
  • 生物煉製廠木質素
    • 產品萃取/純化
    • 木質纖維素生物精煉經濟
    • 商業和預商業生物精煉木質素生產設施和工藝
    • SWOT分析
    • 有機溶膠木質素
    • 水解木質素
    • 蒸煮爆碎木質素
  • 木質素奈米粒子
  • 木質素系碳材料
  • 脫聚合木質素產品
  • 木質素來歷的生質塑膠

第4章 木質素的市場

  • 市場促進因素和趨勢
  • 木質素產業的發展(2020年~2024年)
  • 生產能力
    • 技術性木質素利用可能性(乾燥,噸/年)
    • 生物質轉換(生物煉製廠)
  • 木質素消費
    • 各類型
    • 各市場
  • 各地區
  • 價格
  • 市場與用途
    • 環境熱能,電力·能源
    • 生質油
    • 合成氣
    • 芳香族化合物
    • 聚合物
    • 水凝膠
    • 炭材料費
    • 建設材料
    • 橡膠
    • 瀝青,柏油
    • 燃料
    • 能源儲存
    • 粘合劑,乳化劑,分散劑
    • 螯合劑
    • 塗料
    • 陶瓷
    • 汽車
    • 阻燃劑
    • 抗氧化劑
    • 潤滑劑
    • dust控制

第5章 企業簡介(企業94公司的簡介)

第6章 參考文獻

Lignin, the second most abundant natural polymer after cellulose, is rapidly gaining importance in the global shift towards sustainable and bio-based materials. As a by-product of the pulp and paper industry and biorefineries, lignin represents a vast, renewable resource that has been historically underutilized. The growing focus on reducing dependence on fossil-based materials and the push for circular economy solutions have spotlighted lignin's potential as a versatile biomaterial and a source of valuable biochemicals. The importance of lignin biomaterials and biochemicals lies in their ability to replace petroleum-based products across multiple industries. Lignin's complex structure, rich in aromatic compounds, makes it an ideal precursor for high-value chemicals and materials. Its potential applications range from biofuels and bioplastics to carbon fibers and energy storage materials, offering sustainable alternatives in sectors such as automotive, construction, packaging, and electronics.

Market prospects for lignin-based products are increasingly promising. The global lignin market is expected to grow significantly in the coming years, driven by factors such as increased environmental regulations, growing consumer demand for sustainable products, and technological advancements in lignin extraction and modification processes. High-value applications, such as carbon fibers and aromatic chemicals, are particularly poised for growth, as they offer substantial environmental benefits and performance advantages over traditional materials.

This comprehensive market report provides an in-depth analysis of the global lignin market, covering the period from 2025 to 2035. As industries worldwide seek sustainable alternatives to petroleum-based products, lignin has emerged as a promising bio-based material with diverse applications.

Report Contents include:

  • Introduction to Lignin
    • Definition and structure of lignin
    • Types of lignin (sulfur-containing, sulfur-free)
    • Properties and characteristics
    • The lignocellulose biorefinery concept
    • Current markets and applications
    • Market challenges
  • Lignin Production Processes
    • Feedstock preprocessing
    • Conversion processes (thermochemical, chemical, biological, electrochemical)
    • Detailed analysis of lignin types:
      • Lignosulfonates
      • Kraft lignin
      • Soda lignin
      • Biorefinery lignin (including organosolv, hydrolytic, and steam-exploded lignin)
    • Emerging technologies: lignin nanoparticles, lignin-based carbon materials, depolymerized lignin products, and lignin-based bioplastics
  • Market Analysis
    • Market drivers and trends
    • Industry developments (2020-2024)
    • Production capacities (technical lignin and biorefinery lignin)
    • Consumption patterns by lignin type, market, and region
    • Pricing trends
  • Markets and Applications
    • Energy (heat and power, bio-oils, syngas)
    • Aromatic compounds (BTX, phenol, vanillin)
    • Polymers and hydrogels
    • Carbon materials (carbon black, activated carbons, carbon fiber)
    • Construction materials
    • Rubber, bitumen, and asphalt
    • Fuels
    • Energy storage (supercapacitors, lithium-ion batteries)
    • Binders, emulsifiers, and dispersants
    • Coatings and ceramics
    • Automotive applications
    • Specialty applications (fire retardants, antioxidants, lubricants, dust control)
  • Company Profiles: Detailed profiles of key players and emerging companies in the lignin market. Companies profiled include Aemetis, Andritz, Anellotech, Attis Innovations, Avantium, Blue Biofuels, Bloom Biorenewables, Boreal Bioproducts, Borregaard Group, Bright Day Graphene, Burgo Group, Carbon Crusher, Cellicon, CH-Bioforce, Chempolis, CIMV, Clariant, Domsjo Fabriker, Domtar Paper Company, Enerkem, Enviral, Fibenol, FiberX, FP Innovations, Fraunhofer CBP, Fraunhofer LBF, Futurity Bio-Ventures, G+E GETEC Holding, Global Bioenergies, Graanul Invest, Granbio Technologies, Hexion, Ingevity, Iogen, Kanematsu, Kanteleen Voima, Klabin, Koehler Group, Leaf Resources, Ligna Energy, LignEasy, Lignin Industries, Lignoflow Technologies, Lignolix, Lignomateria, LignOrganic, Lignovations, LignoPure, Liquid Lignin Company, Lixea, LXP Group, Mehler Engineered Products, Mercer International, Metgen, Mobius, NewEnergyBlue, Nippon Paper Industries, Novozymes, Obayashi, ORLEN Poludnie, Praj Industries, Prefere Resins Holding, Prisma Renewable Composites, Proligreen........and more.
  • Comprehensive Market Data: The report provides detailed market size data, growth projections, and revenue forecasts for various segments of the lignin market from 2025 to 2035.
  • Regional Analysis: Breakdown of lignin consumption by region, providing a global perspective on market dynamics.
  • Future Outlook: Analysis of emerging applications and potential future developments in the lignin market.
  • Detailed SWOT analyses for different types of lignin, helping stakeholders understand the strengths, weaknesses, opportunities, and threats in various market segments.
  • Analysis of biorefinery lignin, including commercial and pre-commercial production facilities and processes, highlighting the shift towards more sustainable and efficient lignin production methods.
  • Exploration of high-value applications such as carbon fibers, energy storage materials, and aromatic compounds, showcasing lignin's potential to replace petroleum-based products.
  • Insights into market drivers and challenges, including regulatory factors, technological advancements, and changing consumer preferences.
  • Examination of lignin's role in the circular bioeconomy and its potential to contribute to sustainability goals across industries.

Who Should Read This Report:

  • Executives and strategists in the chemical and materials industries
  • Researchers and R&D professionals in biomaterials and green chemistry
  • Investors and financial analysts focusing on sustainable technologies
  • Policy makers and regulators in the fields of renewable materials and bioeconomy
  • Sustainability officers in industries such as packaging, construction, and automotive
  • Procurement specialists looking for bio-based alternatives to traditional materials

Table of Contents

1. RESEARCH METHODOLOGY

2. INTRODUCTION

  • 2.1. What is lignin?
    • 2.1.1. Lignin structure
  • 2.2. Types of lignin
    • 2.2.1. Sulfur containing lignin
    • 2.2.2. Sulfur-free lignin from biorefinery process
  • 2.3. Properties
  • 2.4. The lignocellulose biorefinery
  • 2.5. Markets and applications
  • 2.6. Market challenges

3. LIGNIN PRODUCTION PROCESSES

  • 3.1. Feedstock Preprocessing
  • 3.2. Conversion Processes
    • 3.2.1. Thermochemical Conversion
    • 3.2.2. Chemical Conversion
    • 3.2.3. Biological Conversion
    • 3.2.4. Electrochemical Conversion
  • 3.3. Lignosulphonates
    • 3.3.1. Description
    • 3.3.2. SWOT analysis
  • 3.4. Kraft Lignin
    • 3.4.1. Description
    • 3.4.2. LignoBoost process
    • 3.4.3. LignoForce method
    • 3.4.4. Sequential Liquid Lignin Recovery and Purification
    • 3.4.5. A-Recovery+
    • 3.4.6. SWOT analysis
  • 3.5. Soda lignin
    • 3.5.1. Description
    • 3.5.2. SWOT analysis
  • 3.6. Biorefinery lignin
    • 3.6.1. Products Extraction & Purification
    • 3.6.2. Lignocellulose Biorefinery Economics
    • 3.6.3. Commercial and pre-commercial biorefinery lignin production facilities and processes
    • 3.6.4. SWOT analysis
    • 3.6.5. Organosolv lignin
      • 3.6.5.1. Description
      • 3.6.5.2. SWOT analysis
    • 3.6.6. Hydrolytic lignin
      • 3.6.6.1. Description
      • 3.6.6.2. SWOT analysis
    • 3.6.7. Steam Exploded Lignin
      • 3.6.7.1. Description
      • 3.6.7.2. SWOT analysis
  • 3.7. Lignin nanoparticles
  • 3.8. Lignin-based carbon materials
  • 3.9. Depolymerized lignin products
  • 3.10. Lignin-based bioplastics

4. MARKETS FOR LIGNIN

  • 4.1. Market drivers and trends
  • 4.2. Lignin industry developments 2020-2024
  • 4.3. Production capacities
    • 4.3.1. Technical lignin availability (dry ton/y)
    • 4.3.2. Biomass conversion (Biorefinery)
  • 4.4. Consumption of lignin
    • 4.4.1. By type
    • 4.4.2. By market
  • 4.5. By region
  • 4.6. Prices
  • 4.7. Markets and applications
    • 4.7.1. Heat and power energy
    • 4.7.2. Bio-oils
    • 4.7.3. Syngas
    • 4.7.4. Aromatic compounds
      • 4.7.4.1. Benzene, toluene and xylene
      • 4.7.4.2. Phenol and phenolic resins
      • 4.7.4.3. Vanillin
    • 4.7.5. Polymers
    • 4.7.6. Hydrogels
      • 4.7.6.1. Adhesives
    • 4.7.7. Carbon materials
      • 4.7.7.1. Carbon black
      • 4.7.7.2. Activated carbons
      • 4.7.7.3. Carbon fiber
    • 4.7.8. Construction materials
    • 4.7.9. Rubber
    • 4.7.10. Bitumen and Asphalt
    • 4.7.11. Fuels
    • 4.7.12. Energy storage
      • 4.7.12.1. Supercapacitors
      • 4.7.12.2. Anodes for lithium-ion batteries
      • 4.7.12.3. Gel electrolytes for lithium-ion batteries
      • 4.7.12.4. Binders for lithium-ion batteries
      • 4.7.12.5. Cathodes for lithium-ion batteries
      • 4.7.12.6. Sodium-ion batteries
    • 4.7.13. Binders, emulsifiers and dispersants
    • 4.7.14. Chelating agents
    • 4.7.15. Coatings
    • 4.7.16. Ceramics
    • 4.7.17. Automotive
    • 4.7.18. Fire retardants
    • 4.7.19. Antioxidants
    • 4.7.20. Lubricants
    • 4.7.21. Dust control

5. COMPANY PROFILES (94 company profiles)

6. REFERENCES

List of Tables

  • Table 1. Properties of lignins and their applications
  • Table 2. Technical lignin types and applications
  • Table 3. Classification of technical lignins
  • Table 4. Properties of lignin, by type
  • Table 5. Lignin content of selected biomass
  • Table 6. Markets and applications for lignin
  • Table 7. Market challenges for lignin
  • Table 8. Processes for lignin production
  • Table 9. Biorefinery feedstocks
  • Table 10. Comparison of pulping and biorefinery lignins
  • Table 11. Commercial and pre-commercial biorefinery lignin production facilities and processes
  • Table 12. Markets for lignin
  • Table 13. Market drivers and trends for lignin
  • Table 14. Lignin industry developments 2020-2024
  • Table 15. Production capacities of technical lignin producers
  • Table 16. Production capacities of biorefinery lignin producers
  • Table 17. Estimated consumption of lignin, by type, 2019-2035 (00,000 Tons)
  • Table 18. Estimated consumption of lignin, by market, 2019-2035 (00,000 Tons)
  • Table 19. Estimated consumption of lignin, by market, 2019-2035 (00,000 Tons)
  • Table 20. Lignin aromatic compound products
  • Table 21. Prices of benzene, toluene, xylene and their derivatives
  • Table 22. Lignin products in polymeric materials
  • Table 23. Application of lignin in plastics and composites
  • Table 24. Applications of lignin in construction materials
  • Table 25. Lignin applications in rubber and elastomers
  • Table 26. Lignin products in fuels
  • Table 27. Lignin-derived anodes in lithium batteries
  • Table 28. Application of lignin in binders, emulsifiers and dispersants

List of Figures

  • Figure 1. Wood processing within the Kraft process
  • Figure 2. High purity lignin
  • Figure 3. Lignocellulose architecture
  • Figure 4. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins
  • Figure 5. The lignocellulose biorefinery
  • Figure 6. Lignocellulosic biomass conversion and products
  • Figure 7. Lignosulfonates SWOT analysis
  • Figure 8. LignoBoost process
  • Figure 9. LignoForce system for lignin recovery from black liquor
  • Figure 10. Sequential liquid-lignin recovery and purification (SLPR) system
  • Figure 11. A-Recovery+ chemical recovery concept
  • Figure 12. Kraft lignin SWOT analysis
  • Figure 13. Soda lignin SWOT analysis
  • Figure 14. Schematic of a biorefinery for production of carriers and chemicals
  • Figure 15. Biorefinery lignin SWOT analysis
  • Figure 16. Organosolv lignin
  • Figure 17. Organosolv lignin SWOT analysis
  • Figure 18. Hydrolytic lignin powder
  • Figure 19. Hydrolytic lignin SWOT analysis
  • Figure 20. Steam Exploded Lignin SWOT analysis
  • Figure 21. Estimated consumption of lignin, by type, 2019-2035 (00,000 Tons)
  • Figure 22. Estimated consumption of lignin, by market, 2019-2035 (00,000 Tons)
  • Figure 23. Estimated consumption of lignin, by market, 2019-2035 (00,000 Tons)
  • Figure 24. Schematic of WISA plywood home
  • Figure 25. Lignin based activated carbon
  • Figure 26. Lignin/celluose precursor
  • Figure 27. Functional rubber filler made from lignin
  • Figure 28. Road repair utilizing lignin
  • Figure 29. Prototype of lignin based supercapacitor
  • Figure 30. Stora Enso lignin battery materials
  • Figure 31. ANDRITZ Lignin Recovery process
  • Figure 32. DAWN Technology Process
  • Figure 33. BALITM technology
  • Figure 34. Pressurized Hot Water Extraction
  • Figure 35. sunliquid-R production process
  • Figure 36. Domsjo process
  • Figure 37. TMP-Bio Process
  • Figure 38. Flow chart of the lignocellulose biorefinery pilot plant in Leuna
  • Figure 39. AVAPTM process
  • Figure 40. GreenPower+TM process
  • Figure 41. Renol in packaging
  • Figure 42. Lignin gel
  • Figure 43. BioFlex process
  • Figure 44. LX Process
  • Figure 45. METNINTM Lignin refining technology
  • Figure 46. Enfinity cellulosic ethanol technology process
  • Figure 47: Plantrose process
  • Figure 48. Hansa lignin
  • Figure 49. Stora Enso lignin battery materials
  • Figure 50. Solid Novolac Type lignin modified phenolic resins
  • Figure 51. UPM biorefinery process
  • Figure 52. The Proesa-R Process
  • Figure 53. Goldilocks process and applications