微射流的全球市場(2025年~2035年)
市場調查報告書
商品編碼
1574328

微射流的全球市場(2025年~2035年)

The Global Microfluidics Market 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 295 Pages, 95 Tables, 74 Figures | 訂單完成後即時交付

價格

由於醫療、製藥和工業領域的創新應用,全球微流體市場到 2035 年將顯示出非凡的成長潛力。這種在微觀尺度上操縱流體的複雜技術繼續革新傳統的診斷、藥物開發和製程控制方法。目前,醫療應用佔據了大部分市場佔有率,護理點診斷和藥物研究推動了成長,而環境監測、食品安全和製程控制等工業應用則顯示出巨大的擴張潛力。

材料科學、製造流程和數位整合的技術創新不斷降低製造成本並增強設備功能,從而實現更廣泛的市場採用。人工智慧、自動化和先進感測功能的整合創造了新的應用可能性和市場機會。主要的市場推動因素包括對快速診斷解決方案的需求不斷增加、對藥物研究的投資不斷增加以及個人化醫療應用的擴大。隨著製造流程的改進和成本的下降,熱管理等傳統和新應用領域的市場採用將會加速。

本報告提供全球微射流市場相關調查分析,有關2025年~2035年的市場動態,技術創新,成長機會的詳細考察。

目錄

第1章 摘要整理

  • 市場規模
  • 新的趨勢和技術
  • 推動市場要素
    • 即時診斷的進步
    • 對個人化醫療的需求不斷增長
    • 藥物發現與生命科學研究的成長
    • 工業與環境監測的新應用
  • 阻礙市場要素
    • 初始成本高且製造複雜
    • 標準化和監管課題
    • 新興市場的認知度和採用率有限
    • 在維持品質的同時擴大產量
    • 有競爭力的技術和替代解決方案
  • 市場機會
    • 將人工智慧和物聯網整合到微流體設備中
    • 從實驗室到工廠
    • 生物功能晶片(器官晶片)及其在 3D 細胞培養的新應用
    • 空間研究應用
    • 合成生物學
    • 先進材料的開發
    • 食品安全與品質
  • 競爭情形概要

第2章 簡介

  • 微流體技術類型
    • 連續流微流體
    • 基於液滴的微流體
    • 數位微流控
    • 紙基微流體

第3章 全球市場規模與預測(2025年~2035年)

  • 市場整體規模和成長率
    • 市場規模的實際成果(2020年~2024年)
    • 市場規模的預測(2025年~2035年)
  • 市場區隔:各最終用途市場
    • 消費者市場
    • 產業市場
    • 醫療市場
  • 地區市場分析
    • 北美
    • 歐洲
    • 亞太地區
    • 其他地區

第4章 市場與應用

  • 診斷
    • 概要
    • 新趨勢
    • 感染疾病
    • 腫瘤
    • 心臟
    • 其他
  • 製藥,生命科學研究
    • 藥物篩檢
    • 基因學
    • 蛋白質體學
    • 細胞分析
  • 噴墨印刷
    • 消費者取向印刷
    • 產業印刷
    • 3D列印
  • 環境·食品安全實驗
    • 水質分析
    • 食品污染物質檢測
    • 土壤分析
  • 其他(案例:化妝品,農業)
    • 化妝品·個人保養品製造
    • 汽車的液體分析
    • 能源生產監測
    • 材料製造
    • 化學處理
    • 農業
  • 模組的種類
    • 微流體晶片
    • 幫浦,閥門
    • 感測器,檢測器
    • 微流體濾芯
    • 其他
  • 材料
    • 聚合物
    • 玻璃晶圓
    • 矽晶圓
    • 紙,其他的材料

第5章 市場趨勢

  • 消費者市場趨勢
    • 噴墨列印技術的演變
    • 新型消費者診斷與健康設備
  • 產業市場趨勢
    • 環境與食品安全檢測的進展
    • 石油測試與農業應用
    • 電子設備冷卻解決方案
  • 醫療市場趨勢
    • 即時診斷的發展
    • 微流控在藥物發現與開發的應用
    • 次世代定序的進展
    • 仿生系統與生物功能晶片(Organ-on-a-Chip)
    • 細胞分析與治療應用

第6章 供應鏈分析

  • 原料·元件供應商
  • 微流體晶片廠商
  • 模組·設備積分器(整合者)
  • 終端用戶

第7章 技術趨勢與革新

  • 生物感應器的開發
    • 用於細胞治療的光子感測器
    • 用於即時診斷的有機矽生物感測器
  • 材料的革新
    • 聚合物技術的進步
    • PDMS 替代品和混合材料
    • 玻璃和矽晶圓的創新
  • 製造趨勢
    • 聚合物製造的進步
    • 矽和玻璃製造技術
    • 與後端流程集成
    • 表面處理和塗層
  • 新技術
    • 人工智慧與機器學習的集成
    • 微流控中的 3D 列印
    • 紙基微流體

第8章 法規形勢

  • 微流體設備的法規結構概要
  • FDA法規(美國)
    • 微流控裝置的分類
    • 上市前核准 (PMA) 流程
    • 510(k) 審核流程
  • CE標註(歐洲)
    • 醫療器材法規 (MDR)
    • 體外診斷醫療器材法規 (IVDR)
    • 合格評定程序
  • NMPA法規(中國)
    • 醫療器材註冊程序
    • 臨床試驗要求
    • 製造和品質控制標準

第9章 未來預測與市場機會

  • 新應用程式和用例
    • 空間研究中的微流控
    • 微生物組分析與工程
  • 神經科技
    • 神經科技與腦晶片
    • 合成生物學與生物製造
    • 先進材料測試與開發
  • 生成式人工智慧對微流體的潛在影響
    • 利用人工智慧進行設計優化
    • 流體動力學預測建模
    • 自動資料分析與解釋
  • 微流控在精準醫療和個人化醫療的應用
    • 液體活檢和循環生物標記
    • 個人化藥物篩選
    • 用於持續健康監測的微流體設備
  • 發展中國家的機遇
    • 在資源有限的環境中進行現場診斷
    • 經濟實惠的農業微流體解決方案
    • 快速工業化地區的環境監測

第10章 企業簡介(企業200公司的簡介)

第11章 附錄

第12章 參考文獻

The global microfluidics market demonstrates exceptional growth potential through 2035, driven by transformative applications across healthcare, pharmaceuticals, and industrial sectors. This sophisticated technology, which manipulates fluids at microscopic scales, continues to revolutionize traditional approaches to diagnostics, drug development, and process control. Medical applications currently dominate market share, with point-of-care diagnostics and pharmaceutical research leading growth, while industrial applications in environmental monitoring, food safety, and process control show substantial expansion potential.

Technological innovations in materials science, manufacturing processes, and digital integration continue to reduce production costs and enhance device functionality, enabling broader market adoption. The integration of artificial intelligence, automation, and advanced sensing capabilities creates new application possibilities and market opportunities. Key market drivers include increasing demand for rapid diagnostic solutions, growing investment in pharmaceutical research, and expanding applications in personalized medicine. As manufacturing processes improve and costs decrease, market adoption accelerates across both traditional and emerging applications in areas such as thermal management.

"The Global Microfluidics Market 2025-2035" providing detailed insights into market dynamics, technological innovations, and growth opportunities from 2025 to 2035. Report contents include: The microfluidics market is experiencing transformative growth driven by breakthroughs in point-of-care diagnostics, drug discovery applications, and personalized medicine.

Report contents include:

  • End-Market Segmentation
    • Medical Market:
      • In-vitro diagnostics
      • Drug discovery and development
      • Genomics and proteomics
      • Point-of-care testing
      • Personalized medicine applications
      • Organ-on-chip platforms
    • Industrial Market:
      • Environmental monitoring
      • Food and beverage testing
      • Oil and gas analysis
      • Electronic cooling solutions
      • Process control applications
      • Quality assurance systems
    • Consumer Market:
      • Inkjet printing technologies
      • Consumer diagnostics
      • Wearable devices
      • Personal care applications
  • Developments across materials, manufacturing processes, and integration technologies:
    • Advanced polymer technologies
    • PDMS alternatives
    • Glass and silicon innovations
    • Paper-based platforms
    • Hybrid materials development
    • 3D printing applications
    • Injection molding innovations
    • Hot embossing techniques
    • Wafer-level packaging
    • Integration technologies
  • Emerging Technologies:
    • AI and machine learning integration
    • Biosensor developments
    • Digital microfluidics
    • Paper-based systems
    • Organ-on-chip platforms
  • Applications and Market Opportunities
    • Diagnostics:
      • Infectious disease testing
      • Oncology applications
      • Cardiovascular diagnostics
      • Neurological testing
      • Genetic screening
    • Pharmaceutical Research:
      • Drug screening platforms
      • Genomics applications
      • Proteomics research
      • Cell analysis systems
      • High-throughput screening
    • Environmental and Industrial:
      • Water quality analysis
      • Food safety testing
      • Industrial process control
      • Environmental monitoring
      • Agricultural applications
  • Market Drivers and Challenges
  • Regulatory Landscape
  • Detailed profiles of 200 companies including 3M, 10X Genomics, Abbott, AbCellera, Accelix, Achira Labs, AGC, Agilent Technologies, AgPlus Diagnostics, Akonni Biosystems, ALiA Biotech, Aline inc, Allozymes, Alveo, Amberstone Biosciences Inc., Ande Corporation, Arrayit Corporation, Astraveus, Atomica, Atrandi Biosciences, AxBio, Baebies, Bartels Mikrotechnik, Becton Dickinson, BforCure, BGI, Bi.Flow Systems GmbH, Binx Health, Biocartis, Biomensio, bioMerieux, Bionano Genomics, Bioneer, Bio-Rad, BioSurfit, Biotechne, Boehringer Ingelheim, Bosch, Bruker Cellular Analysis, CapitalBiotech Corporation, Capsum, Cellbox Labs, Cellares, CellFE, Cellix Ltd., Charles River Laboratories, ClexBio, CN Bio, Cytovale, Danaher Corporation, Deepcell, Dermagnostix, DiaSorin Molecular, DNA electronics (DNAe), DNA Nudge, Dolomite Microfluidics, Eden Microfluidics, Element Biosciences, Elveflow, Emulate Bio, ENPLAS, Epicore Biosystems, Epigem, Evonetix, FEMTOprint, FinalSpark, Finnadvance, FLEXOMICS LLC, Fluigent, Fluxergy, Genalyte, GenSpeed Biotech GmbH, Hesperos Inc., Hicomp Microtech, Hochuen Medical, IDEX Health & Science, iLine Microsystems, Illumina, Imec, iMiGiNE, IMT AG, Inflammatix, Inorevia, Integra Biosciences, Invetech, InziGn Pte Ltd., Klearia, Kloe, Kypha, LightDeck, LioniX, LuminUltra Technologies, Lunaphore Technologies, Medimate, Mekonos, MeMed BV, Memo Therapeutics AG, Menarini Silicon Biosystems, Mesa labs, MGI Tech, MiCo BioMed USA, Microcaps AG, Microfluidic ChipShop, Micron Biomedical, Micronit, MicrofluidiX, Micropoint Technologies, microTEC, miDiagnostics, Miltenyi Biotec, Mimetas, Minos Biosciences, Mission Bio, Molbio Diagnostics, MZP tech, Nag Bioscience, NanoCellect, NanoDx, NanoEntek, Nanomix, NanoPass, NanoScribe, Netri, Nicoya, Nortis, Nuclera, Nutcracker Therapeutics, Okomera, Ondavia, Opgen Group, OPKO, Optolane Technologies, Orange Biomed, Osler Diagnostics, Oxford Nanopore Technologies, Pacific Biosciences, Paragraf, Parallel Fluidics, Pattern Bioscience, Perkinelmer, Philips Engineering Solutions, Phillips Medisize, PixCell Medical, Potomac Photonics (Goodfellow), Precision Nanosystems, Qiagen, Qorvo Biotechnologies, Quanterix, QuantuMDx, Quantum-Si, QuidelOrtho, Qurin Diagnostics, Rab-Microfluidics and more....
  • Future Outlook Analysis of emerging opportunities
  • Supply Chain Analysis:
    • Raw materials suppliers
    • Component manufacturers
    • Device integrators
    • End-user markets
    • Distribution channels
  • Market Opportunities

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Size
  • 1.2. Emerging Trends and Technologies
  • 1.3. Market Drivers
    • 1.3.1. Advancements in Point-of-Care Diagnostics
      • 1.3.1.1. Rapid Testing for Infectious Diseases
      • 1.3.1.2. Chronic Disease Management
      • 1.3.1.3. Decentralized Healthcare Trends
    • 1.3.2. Increasing Demand for Personalized Medicine
      • 1.3.2.1. Genomics and Proteomics Applications
      • 1.3.2.2. Targeted Drug Delivery Systems
      • 1.3.2.3. Companion Diagnostics
    • 1.3.3. Growth in Drug Discovery and Life Sciences Research
      • 1.3.3.1. High-Throughput Screening
      • 1.3.3.2. Organ-on-a-Chip Models
      • 1.3.3.3. Single-Cell Analysis
    • 1.3.4. Emerging Applications in Industrial and Environmental Monitoring
      • 1.3.4.1. Water Quality Testing
      • 1.3.4.2. Food Safety Analysis
      • 1.3.4.3. Industrial Process Control
  • 1.4. Market Restraints
    • 1.4.1. High Initial Costs and Complexities in Manufacturing
    • 1.4.2. Standardization and Regulatory Challenges
    • 1.4.3. Limited Awareness and Adoption in Emerging Markets
    • 1.4.4. Scaling Up Production While Maintaining Quality
    • 1.4.5. Competing Technologies and Alternative Solutions
  • 1.5. Market Opportunities
    • 1.5.1. Integration of AI and IoT in Microfluidic Devices
    • 1.5.2. Lab-to-fab
    • 1.5.3. Novel Applications in Organ-on-a-Chip and 3D Cell Culture
    • 1.5.4. Space Research Applications
    • 1.5.5. Synthetic Biology
    • 1.5.6. Advanced Materials Development
    • 1.5.7. Food Safety and Quality
  • 1.6. Competitive Landscape Overview

2. INTRODUCTION

  • 2.1. Types of Microfluidic Technologies
    • 2.1.1. Continuous-flow Microfluidics
    • 2.1.2. Droplet-based Microfluidics
    • 2.1.3. Digital Microfluidics
    • 2.1.4. Paper-based Microfluidics

3. GLOBAL MARKET SIZE AND FORECAST (2025-2035)

  • 3.1. Overall Market Size and Growth Rate
    • 3.1.1. Historical Market Size (2020-2024)
    • 3.1.2. Forecast Market Size (2025-2035)
  • 3.2. Market Segmentation by End-Use Markets
    • 3.2.1. Consumer Market
      • 3.2.1.1. Inkjet Printing
      • 3.2.1.2. Consumer Diagnostics
      • 3.2.1.3. Wearable Devices
    • 3.2.2. Industrial Market
      • 3.2.2.1. Environmental Monitoring
      • 3.2.2.2. Food and Beverage Testing
      • 3.2.2.3. Oil and Gas Analysis
      • 3.2.2.4. Electronic Cooling Solutions
    • 3.2.3. Medical Market
      • 3.2.3.1. In-Vitro Diagnostics
      • 3.2.3.2. Drug Discovery and Development
      • 3.2.3.3. Genomics and Proteomics
      • 3.2.3.4. Point-of-Care Testing
  • 3.3. Regional Market Analysis
    • 3.3.1. North America
    • 3.3.2. Europe
    • 3.3.3. Asia-Pacific
    • 3.3.4. Rest of the World

4. MARKETS AND APPLICATIONS

  • 4.1. Diagnostics
    • 4.1.1. Overview
    • 4.1.2. Emerging Trends
      • 4.1.2.1. Artificial Intelligence Integration
      • 4.1.2.2. Smartphone-Based Systems
      • 4.1.2.3. Paper-Based Microfluidics
      • 4.1.2.4. Digital Microfluidics
      • 4.1.2.5. 3D-Printed Microfluidics
    • 4.1.3. Infectious Diseases
      • 4.1.3.1. Viral Infection Detection
      • 4.1.3.2. Bacterial Infection Management
      • 4.1.3.3. Emerging Pathogen Response
    • 4.1.4. Oncology
      • 4.1.4.1. Circulating Tumor Cell Analysis
      • 4.1.4.2. Molecular Profiling and Monitoring
      • 4.1.4.3. Treatment Response Monitoring
    • 4.1.5. Cardiology
      • 4.1.5.1. Acute Cardiac Event Management
      • 4.1.5.2. Chronic Disease Monitoring
    • 4.1.6. Others
      • 4.1.6.1. Neurological Disorders
        • 4.1.6.1.1. Blood-Brain Barrier Modeling
        • 4.1.6.1.2. Neurodegenerative Disease Diagnostics
      • 4.1.6.2. Endocrine Disorders
        • 4.1.6.2.1. Diabetes Management
        • 4.1.6.2.2. Thyroid Function Testing
      • 4.1.6.3. Autoimmune Disease Diagnostics
        • 4.1.6.3.1. Comprehensive Antibody Profiling
        • 4.1.6.3.2. Inflammatory Response Analysis
      • 4.1.6.4. Genetic Testing Applications
        • 4.1.6.4.1. Prenatal Testing
        • 4.1.6.4.2. Hereditary Disease Screening
      • 4.1.6.5. Rare Disease Diagnostics
  • 4.2. Pharmaceutical and Life Science Research
    • 4.2.1. Drug Screening
    • 4.2.2. Genomics
    • 4.2.3. Proteomics
    • 4.2.4. Cell Analysis
  • 4.3. Inkjet Printing
    • 4.3.1. Consumer Printing
    • 4.3.2. Industrial Printing
    • 4.3.3. 3D Printing
  • 4.4. Environmental and Food Safety Testing
    • 4.4.1. Water Quality Analysis
    • 4.4.2. Food Contaminant Detection
    • 4.4.3. Soil Analysis
  • 4.5. Others (e.g., Cosmetics, Agriculture)
    • 4.5.1. Cosmetics and Personal Care Manufacturing
    • 4.5.2. Automotive Fluids Analysis
    • 4.5.3. Energy Production Monitoring
    • 4.5.4. Materials Manufacturing
    • 4.5.5. Chemical Processing
    • 4.5.6. Agriculture
  • 4.6. Module Types
    • 4.6.1. Microfluidic Chips
    • 4.6.2. Pumps and Valves
    • 4.6.3. Sensors and Detectors
    • 4.6.4. Microfluidic Cartridges
    • 4.6.5. Others
  • 4.7. Materials
    • 4.7.1. Polymer
      • 4.7.1.1. Thermoplastics (PMMA, COC, PS)
      • 4.7.1.2. Thermosets
      • 4.7.1.3. PDMS (Polydimethylsiloxane)
    • 4.7.2. Glass Wafers
    • 4.7.3. Silicon Wafers
    • 4.7.4. Paper and Other Materials
      • 4.7.4.1. Multiplexed Analysis Platforms
      • 4.7.4.2. Integration with IoT for Real-time Monitoring

5. MARKET TRENDS

  • 5.1. Consumer Market Trends
    • 5.1.1. Evolution of Inkjet Printing Technologies
      • 5.1.1.1. Continuous Inkjet (CIJ) vs. Drop-on-Demand (DOD)
      • 5.1.1.2. Advancements in Printhead Technology
      • 5.1.1.3. Eco-friendly Inks and Sustainability Trends
    • 5.1.2. Emerging Consumer Diagnostics and Wellness Devices
      • 5.1.2.1. At-home Testing Kits
      • 5.1.2.2. Wearable Microfluidic Devices
      • 5.1.2.3. Personalized Nutrition and Hydration Monitoring
  • 5.2. Industrial Market Trends
    • 5.2.1. Advancements in Environmental and Food Safety Testing
      • 5.2.1.1. Rapid On-site Detection Systems
      • 5.2.1.2. Multiplexed Analysis Platforms
      • 5.2.1.3. Integration with IoT for Real-time Monitoring
    • 5.2.2. Applications in Oil Testing and Agriculture
      • 5.2.2.1. In-situ Oil Analysis
      • 5.2.2.2. Precision Agriculture and Crop Management
      • 5.2.2.3. Soil Health Monitoring
    • 5.2.3. Electronic Cooling Solutions
      • 5.2.3.1. Microfluidic Cooling for High-Performance Computing
      • 5.2.3.2. Innovations in Data Center Cooling
        • 5.2.3.2.1. Thermal management
      • 5.2.3.3. Challenges and Opportunities in Chip-level Cooling
  • 5.3. Medical Market Trends
    • 5.3.1. Point-of-Care Diagnostics Evolution
      • 5.3.1.1. Smartphone-integrated Diagnostics
      • 5.3.1.2. Multiplexed POC Platforms
      • 5.3.1.3. Emerging Biomarkers and Test Types
    • 5.3.2. Microfluidics in Drug Discovery and Development
      • 5.3.2.1. High-Throughput Screening Platforms
      • 5.3.2.2. Organ-on-a-Chip for Drug Testing
      • 5.3.2.3. Personalized Drug Efficacy Testing
    • 5.3.3. Next-Generation Sequencing Advancements
      • 5.3.3.1. Microfluidic-based Library Preparation
      • 5.3.3.2. Single-cell Sequencing Platforms
      • 5.3.3.3. Long-read Sequencing Technologies
    • 5.3.4. Microphysiological Systems and Organ-on-a-Chip
      • 5.3.4.1. Multi-organ Systems
      • 5.3.4.2. Disease Modelling
      • 5.3.4.3. Personalized Medicine Applications
    • 5.3.5. Cell Analysis and Therapy Applications
      • 5.3.5.1. Circulating Tumor Cell (CTC) Analysis
      • 5.3.5.2. CAR-T Cell Manufacturing
      • 5.3.5.3. Stem Cell Research and Therapy

6. SUPPLY CHAIN ANALYSIS

  • 6.1. Raw Materials and Components Suppliers
  • 6.2. Microfluidic Chip Manufacturers
  • 6.3. Module and Device Integrators
  • 6.4. End-Users

7. TECHNOLOGY TRENDS AND INNOVATIONS

  • 7.1. Development of Biosensors
    • 7.1.1. Photonic Sensors for Cell Therapy
      • 7.1.1.1. Applications in Cell Sorting and Analysis
      • 7.1.1.2. Challenges and Future Prospects
    • 7.1.2. Silicon-Based Biosensors for Point-of-Care Diagnostics
      • 7.1.2.1. CMOS-Integrated Biosensors
      • 7.1.2.2. Label-free Detection Methods
      • 7.1.2.3. Multiplexed Sensing Platforms
  • 7.2. Materials Innovations
    • 7.2.1. Advancements in Polymer Technologies
      • 7.2.1.1. High-Performance Thermoplastics
      • 7.2.1.2. Biodegradable Polymers
      • 7.2.1.3. Surface Modification Techniques
    • 7.2.2. PDMS Alternatives and Hybrid Materials
      • 7.2.2.1. Thermoplastic Elastomers
      • 7.2.2.2. Fluoropolymers
      • 7.2.2.3. Glass-Polymer Hybrids
    • 7.2.3. Glass and Silicon Wafer Innovations
      • 7.2.3.1. Ultra-thin Glass Substrates
      • 7.2.3.2. 3D-Structured Silicon
      • 7.2.3.3. Nanoporous Materials
  • 7.3. Manufacturing Trends
    • 7.3.1. Polymer Manufacturing Advancements
      • 7.3.1.1. Injection Molding Innovations
      • 7.3.1.2. Hot Embossing Techniques
      • 7.3.1.3. 3D Printing of Microfluidic Devices
    • 7.3.2. Silicon and Glass Manufacturing Techniques
      • 7.3.2.1. Deep Reactive Ion Etching (DRIE)
      • 7.3.2.2. Wafer-level Packaging
      • 7.3.2.3. Through-Silicon Vias (TSVs)
    • 7.3.3. Backend Processes and Integration
      • 7.3.3.1. Bonding Technologies
    • 7.3.4. Surface Treatments and Coatings
      • 7.3.4.1. Integration of Electronics and Microfluidics
  • 7.4. Emerging Technologies
    • 7.4.1. AI and Machine Learning Integration
      • 7.4.1.1. Automated Design of Microfluidic Circuits
      • 7.4.1.2. Predictive Maintenance of Microfluidic Systems
      • 7.4.1.3. Data Analysis and Interpretation
    • 7.4.2. 3D Printing in Microfluidics
      • 7.4.2.1. Stereolithography (SLA) for Microfluidics
      • 7.4.2.2. Multi-material 3D Printing
      • 7.4.2.3. Bioprinting of Tissue Constructs
    • 7.4.3. Paper-Based Microfluidics
      • 7.4.3.1. Fabrication Methods
      • 7.4.3.2. Applications in Low-Resource Settings
      • 7.4.3.3. Integration with Smartphones for Readout

8. REGULATORY LANDSCAPE

  • 8.1. Overview of Regulatory Framework for Microfluidic Devices
  • 8.2. FDA Regulations (USA)
    • 8.2.1. Classification of Microfluidic Devices
    • 8.2.2. Premarket Approval (PMA) Process
    • 8.2.3. 510(k) Clearance Process
  • 8.3. CE Marking (Europe)
    • 8.3.1. Medical Device Regulation (MDR)
    • 8.3.2. In Vitro Diagnostic Regulation (IVDR)
    • 8.3.3. Conformity Assessment Procedures
  • 8.4. NMPA Regulations (China)
    • 8.4.1. Registration Process for Medical Devices
    • 8.4.2. Clinical Trial Requirements
    • 8.4.3. Manufacturing and Quality Control Standards

9. FUTURE OUTLOOK AND MARKET OPPORTUNITIES

  • 9.1. Emerging Applications and Use Cases
    • 9.1.1. Microfluidics in Space Research
    • 9.1.2. Microbiome Analysis and Engineering
  • 9.2. Neurotechnology
    • 9.2.1. Neurotechnology and Brain-on-a-Chip
    • 9.2.2. Synthetic Biology and Biofabrication
    • 9.2.3. Advanced Materials Testing and Development
  • 9.3. Potential Impact of Generative AI on Microfluidics
    • 9.3.1. AI-Driven Design Optimization
    • 9.3.2. Predictive Modeling of Fluid Dynamics
    • 9.3.3. Automated Data Analysis and Interpretation
  • 9.4. Microfluidics in Precision Medicine and Personalized Healthcare
    • 9.4.1. Liquid Biopsy and Circulating Biomarkers
    • 9.4.2. Personalized Drug Screening
    • 9.4.3. Microfluidic Devices for Continuous Health Monitoring
  • 9.5. Opportunities in Developing Economies
    • 9.5.1. Point-of-Care Diagnostics for Resource-Limited Settings
    • 9.5.2. Affordable Microfluidic Solutions for Agriculture
    • 9.5.3. Environmental Monitoring in Rapidly Industrializing Regions

10. COMPANY PROFILES (200 company profiles)

11. APPENDICES

  • 11.1. Glossary of Terms
  • 11.2. List of Abbreviations
  • 11.3. Research Methodology

12. REFERENCES

List of Tables

  • Table 1. Global Microfluidics Market Size and Growth Rate, 2025-2035
  • Table 2. Emerging Trends and Technologies
  • Table 3. Key Market Drivers and Challenges in Microfludics
  • Table 4. Point-of-Care Diagnostics Market Growth, 2025-2035
  • Table 5. Rapid Test Antigen Testing Kit
  • Table 6. Decentralized Healthcare Trends
  • Table 7. Genomics and Proteomics Applications
  • Table 8. Organ-on-a-Chip Models
  • Table 9. Emerging Opportunities in Microfluidics Market
  • Table 10. Market Restraints
  • Table 11. Competing Technologies and Alternative Solutions
  • Table 12. Types of Microfluidic Technologies and Their Applications
  • Table 13. Comparison of Microfluidics with Alternative Technologies
  • Table 14. Global Microfluidics Market Size by End-Market, 2020-2024 ($B)
  • Table 15. Global Microfluidics Market Size by End-Market, 2025-2035 ($B)
  • Table 16. Market Share by End-Market Segment, 2025-2035 (%)
  • Table 17. Consumer Market Size by Application, 2025-2035 ($B)
  • Table 18. Industrial Market Size by Application, 2025-2035 ($B)
  • Table 19. Medical Market Size by Application, 2025-2035 ($B)
  • Table 20. Regional Market Size, 2025-2035 ($B)
  • Table 21. Microfluidics Markets and Applications
  • Table 22. Current Implementation Areas
  • Table 23. Diagnostics Market by Disease Area, 2025-2035 ($B)
  • Table 24. Pharmaceutical and Life Science Research Market Trends
  • Table 25. Comparison of Microfluidics Platforms with conventional methods
  • Table 26. Microfluidics application in genomics
  • Table 27. Microfluidic proteomics application
  • Table 28. Types of cell analysis
  • Table 29. Inkjet Printing Market by Type, 2025-2035 ($B)
  • Table 30. Comparison of inkjet printing techniques
  • Table 31. Environmental and Food Safety Testing Market, 2025-2035 ($B)
  • Table 32. Comparison of microfluidics with traditional environmental and food safety testing methods
  • Table 33. Comparion of microfluidics with traditional methods in water quality analysis
  • Table 34. Comparison of microfluidics for food contaminant detection
  • Table 35. Comparison of microfluidics for soil analysis to other conventional methods
  • Table 36. Microfluidics for energy production monitoring compared to other conventional methods
  • Table 37. Microfluidics for monitoring chemical manufacturing processes compared to other methods
  • Table 38. Market Size by Module Type, 2025-2035 ($B)
  • Table 39. Common materials in microfluidic chips
  • Table 40. Pump Technologies in Microfluidics
  • Table 41. Valve Technologies in Microfluidics
  • Table 42. Sensors and detectors in microfluidic systems,
  • Table 43. Market Share by Material Type, 2025 vs 2035
  • Table 44. Properties of Thermoplastics in Microfluidics
  • Table 45. Types of Thermosets in Microfluidics
  • Table 46. Properties of glass wafers
  • Table 47. Paper materials utilized in microfluidics
  • Table 48. Continuous Inkjet (CIJ) vs. Drop-on-Demand (DOD)
  • Table 49. Advancements in Printhead Technology
  • Table 50. Sustainability metrics for Eco-friendly inks
  • Table 51. Types of Wearable Microfluidic Devices
  • Table 52. Rapid On-site Detection Systems
  • Table 53. Multiplexed Analysis Platforms
  • Table 54. IoT Integration for Real-time Monitoring
  • Table 55. Precision Agriculture Applications
  • Table 56. Microfluidic Cooling Applications in Electronics
  • Table 57. Challenges and Opportunities in Chip-level Cooling
  • Table 58. Multiplexed POC Platform Types
  • Table 59. Emerging Biomarkers and Test Types
  • Table 60. Comparison of Microfluidic Platforms for Drug Discovery
  • Table 61. Next-Generation Sequencing Advancements
  • Table 62. Single-cell Sequencing Platforms
  • Table 63. Long-read Sequencing Technologies
  • Table 64. Personalized Medicine Applications in Microphysiological Systems
  • Table 65. Cell Analysis and Therapy Applications in Microfluidics
  • Table 66. Raw Materials and Components Suppliers
  • Table 67. Microfluidic Chip Manufacturers
  • Table 68. Module and Device Integrators
  • Table 69. Microfluidics End User Categories and Applications
  • Table 70. Comparison of Photonic Sensors for Cell Therapy Applications
  • Table 71. Applications in Cell Sorting and Analysis
  • Table 72. CMOS-Integrated Biosensors
  • Table 73. Label-free Detection Methods
  • Table 74. Multiplexed Sensing Platforms
  • Table 75. Advanced Polymer Materials for Microfluidics, Properties and Applications
  • Table 76. High-Performance Thermoplastics
  • Table 77. Biodegradable Polymers
  • Table 78. Surface Modification Techniques
  • Table 79. Polymer Manufacturing Techniques Comparison
  • Table 80. Hot Embossing Techniques
  • Table 81. Silicon and Glass Manufacturing Techniques, Pros and Cons
  • Table 82. Backend Processes and Integration Trends
  • Table 83. Bonding Technologies
  • Table 84. AI and ML Applications in Microfluidics,
  • Table 85. Multi-material 3D Printing for Microfluidics
  • Table 86.Bioprinting in Microfluidics
  • Table 87. Paper-Based Microfluidics Fabrication Methods
  • Table 88. Applications in Low-Resource Settings
  • Table 89. Global Regulatory Framework for Microfluidic Devices
  • Table 90. FDA Classification of Microfluidic Devices
  • Table 91. Microfluidics Applications in Space Research
  • Table 92. Microbiome Applications
  • Table 93. Synthetic Biology and Biofabrication Applications
  • Table 94. Microfluidic Applications in Materials Testing and Development
  • Table 95. Glossary of terms
  • Table 96. List of Abbreviations

List of Figures

  • Figure 1. Microfluidic chip
  • Figure 2. Global Microfluidics Market Size and Growth Rate, 2025-2035
  • Figure 3. Body on Chip
  • Figure 4. Applications of microfluidics in food safety monitoring
  • Figure 5. Microfluidics Market Map
  • Figure 6. A digital microfluidic system with 3D microstructures for single-cell culture
  • Figure 7. Characterization of paper microfluidics
  • Figure 8. Global Microfluidics Market Size by End-Market, 2020-2024 ($B)
  • Figure 9. Global Microfluidics Market Size by End-Market, 2025-2035 ($B)
  • Figure 10. Consumer Market Size by Application, 2025-2035 ($B)
  • Figure 11. Wearable sweat sensor
  • Figure 12. Industrial Market Size by Application, 2025-2035 ($B)
  • Figure 13. Medical Market Size by Application, 2025-2035 ($B)
  • Figure 14. Regional Market Size, 2025-2035 ($B)
  • Figure 15. Diagnostics Market by Disease Area, 2025-2035 ($B)
  • Figure 16. Market Size by Module Type, 2025-2035 ($B)
  • Figure 17. Overview of the Microfluidics Supply Chain
  • Figure 18. Illumina Patterned Flow Cell Technology
  • Figure 19. CELLINK BIO X Bioprinter
  • Figure 20. 10x Genomics Chromium Controller
  • Figure 21. Abbott i-STAT System
  • Figure 22. Agilent 2100 Bioanalyzer
  • Figure 23. Agilis Reader
  • Figure 24. TruArray technology
  • Figure 25. be.wellTM Analyzer
  • Figure 26. Lakhesys - The Benchtop Cell Factory
  • Figure 27. STYX platform
  • Figure 28. BAEBIES FINDER
  • Figure 29. Bartels Mikrotechnik Micropumps
  • Figure 30. Chronos platform
  • Figure 31. IdyllaTM platform
  • Figure 32. Biomensio Smart multianalyte handheld detection
  • Figure 33. ExperionTM Automated Electrophoresis Station
  • Figure 34. spinit-R platform
  • Figure 35. Infinity MTx platform
  • Figure 36. IntelliSep
  • Figure 37. DNA Nudge analytic device
  • Figure 38. AVITITM System
  • Figure 39. Emulate Organ-Chip Instruments
  • Figure 40. EPIGEM lab on a chip
  • Figure 41. Bioprocessor with eight electrodes attached to four arrays each housing a cluster of brain cells
  • Figure 42. Fluxergy Analyzer
  • Figure 43. MiSeq System
  • Figure 44. TriVerityTM Acute Infection and Sepsis Test
  • Figure 45. Klearia's the PANDa (Portable ANalyzer for trace metals Detection)
  • Figure 46. TriPleXTM
  • Figure 47. Fisic Medimate self-test platform
  • Figure 48. DEPArrayTM platform
  • Figure 49. MACSQuant-R Tyto-R system
  • Figure 50. OrganoPlate-R
  • Figure 51. OhmX Analyzer
  • Figure 52. NanoDx Tbit System
  • Figure 53. Claros 1 analyzer
  • Figure 54. GenotizerTM
  • Figure 55. OBM rapid A1c meter
  • Figure 56. Osler HemaTap-R system
  • Figure 57. MinION portable nanopore sequencing device
  • Figure 58. GridION
  • Figure 59. Graphene Field Effect Transistor
  • Figure 60. PixCell HemScreen
  • Figure 61. QuantumX MX879B
  • Figure 62. Quidel Triage -R System
  • Figure 63. Qurin Biosensor
  • Figure 64. Oleum Oracle-R
  • Figure 65. Apollo
  • Figure 66. The LabChip GXII Touch Protein Characterization System
  • Figure 67. GenMark's ePlex system
  • Figure 68. rqmicro COUNT
  • Figure 69. VerePLEXTM Biosystem
  • Figure 70. Atellica-R VTLi Patient-side Immunoassay Analyzer
  • Figure 71. NioTM dPCR
  • Figure 72. Takara Bio's ICELL8 technology
  • Figure 73. Talis One Test System
  • Figure 74. VisionSort - ThinkCyte