綠色(低碳)鋼鐵的全球市場(2025年~2035年)
市場調查報告書
商品編碼
1639560

綠色(低碳)鋼鐵的全球市場(2025年~2035年)

The Global Market for Green (Low-Carbon) Steel 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 107 Pages, 40 Tables, 16 Figures | 訂單完成後即時交付

價格

綠色鋼鐵是採用與傳統生產方法相比可顯著減少二氧化碳排放的技術和製程生產的鋼鐵。隨著世界各國制定雄心勃勃的脫碳目標,鋼鐵業面臨著採用更清潔的技術和工藝的壓力。這一轉變推動了低碳煉鋼技術的快速發展,重點是基於氫的生產、碳捕獲、利用和儲存(CCUS)以及使用再生能源的電氣化。

許多大型鋼鐵製造商已宣布計劃在未來幾年投資數十億美元用於低碳生產能力。目前,歐洲處於領先地位,安賽樂米塔爾、SSAB 和蒂森克虜伯等公司都在大力推動綠色鋼鐵發展。作為全球最大的鋼鐵生產國,中國也制定了2030年碳排放達到高峰、2060年實現碳中和的目標,預計將在低碳煉鋼方面進行大規模投資。

隨著越來越多的企業採用清潔生產技術和政府實施支援政策,綠色鋼鐵市場預計將快速成長。這一成長將受到汽車、建築和消費性電子產品等主要終端產業需求成長、碳價格上漲和排放法規趨嚴的推動。歐盟雄心勃勃的氣候變遷目標和碳邊境調整機制(CBAM)的推出預計將推動區域需求,該機制將根據進口鋼鐵的碳含量對其進行定價,使歐洲成為未來十年綠色鋼鐵的主要市場。

儘管前景樂觀,但綠色鋼鐵市場仍面臨著可能影響其成長軌蹟的若干課題。與傳統煉鋼製程相比,最大的障礙之一是低碳生產技術的成本較高。儘管隨著技術的成熟和規模的擴大,成本預計會下降,但目前綠色鋼鐵的價格可能仍高於傳統鋼鐵。其他課題包括再生能源和綠氫的供應有限、監管的不確定性以及某些低碳生產流程的技術限制。總體而言,隨著各行業轉向更永續的生產方式,綠色鋼鐵市場預計將在未來十年大幅成長。隨著世界各地的鋼鐵製造商計劃進行大規模投資以及主要終端使用領域的需求不斷增加,低碳鋼將在全球脫碳努力中發揮關鍵作用。然而,要充分發揮綠色鋼鐵的潛力,還需要克服與成本、基礎設施和技術成熟度相關的多重課題。

本報告分析了全球綠色(低碳)鋼鐵市場,並提供了有關低碳生產技術、主要參與者、市場趨勢、課題和機會的資訊。

目錄

第1章 簡介

  • 目前製鐵流程
  • "雙碳" (碳達峰、碳中和)目標和超低排放要求
  • 所謂綠色鋼鐵
    • 特性
    • 脫碳目標與政策
    • 清潔生產技術的進步
  • 生產技術
    • 氫的作用
    • 比較分析
    • 氫氣直接還原鐵 (DRI)
    • 電解
    • 碳捕獲、利用和儲存 (CCUS)
    • 生物炭作為焦炭的替代品
    • 氫氣高爐
    • 基於再生能源的工藝
    • 閃速煉鋼
    • 氫等離子體鐵礦石還原
    • 鐵生物過程
    • 微波處理
    • 積層製造
    • 技術成熟度層級(TRL)
  • 綠色鋼鐵的尖端材料
    • 複合電極
    • 固體氧化物材料
    • 氫貯存金屬
    • 碳複合鋼
    • 塗料,薄膜
    • 永續的黏合劑
    • 鐵礦石催化劑
    • 碳回收材料
    • 廢天然氣(氣體)利用
  • 綠色鋼鐵的優點與缺點
  • 市場與用途
  • 鋼鐵生產的節能和降低成本
  • 數位化
  • 生物質鋼鐵生產與永續的綠色鋼鐵生產連鎖

第2章 綠色鋼鐵的全球市場

  • 全球鋼鐵生產
    • 鋼鐵價格
    • 綠色鋼鐵價格
  • 與綠色鋼鐵廠房生產,現在和計劃中
  • 市場地圖
  • SWOT分析
  • 市場趨勢與機會
  • 產業的發展,資金籌措,革新(2022年~2025年)
  • 市場成長的推動要素
  • 市場課題
  • 最終用途產業
    • 汽車
    • 建設
    • 家電
    • 機器
    • 鐵路
    • 包裝
    • 電子

第3章 全球市場的生產和需求

  • 生產能力(2020年~2035年)
  • 生產和需求(2020年~2035年)
  • 收益(2020年~2035年)
    • 各最終用途產業
    • 各地區
  • 競爭情形
  • 今後的市場預測

第4章 企業簡介(46公司的企業簡介)

第5章 調查手法

第6章 縮寫的清單

第7章 參考文獻

Green steel refers to steel produced using technologies and processes that result in significantly lower CO2 emissions compared to conventional production methods. As countries around the world set ambitious decarbonization targets, the steel sector is under increasing pressure to adopt cleaner technologies and processes. This shift is driving rapid advancements in low-carbon steelmaking, with a focus on hydrogen-based production, carbon capture utilization and storage (CCUS), and electrification using renewable energy.

Many major steel producers have announced plans to invest billions of dollars in low-carbon production capacity over the coming years. Europe is currently leading the charge, with companies like ArcelorMittal, SSAB, and Thyssenkrupp all pursuing green steel initiatives. China, the world's largest steel producer, has also set targets to peak carbon emissions by 2030 and achieve carbon neutrality by 2060, which is expected to drive significant investments in low-carbon steelmaking.

Looking ahead, the green steel market is projected to grow rapidly as more companies adopt clean production technologies and governments implement supportive policies. This growth will be driven by increasing demand from key end-use industries such as automotive, construction, and consumer appliances, as well as rising carbon prices and stricter emissions regulations. In terms of regional demand, Europe is expected to be a key market for green steel over the next decade, driven by the EU's ambitious climate targets and the implementation of a carbon border adjustment mechanism (CBAM) that will put a price on imported steel based on its carbon content.

Despite the positive outlook, the green steel market faces several challenges that could impact its growth trajectory. One of the biggest barriers is the high cost of low-carbon production technologies compared to conventional steelmaking processes. While costs are expected to come down over time as technologies mature and scale up, green steel is likely to remain more expensive than traditional steel in the near term. Other challenges include limited availability of renewable energy and green hydrogen, regulatory uncertainty, and technical limitations of some low-carbon production processes. Overall, the market for green steel is expected to grow significantly over the next decade as the industry transitions towards more sustainable production methods. With major investments planned by steel producers around the world and increasing demand from key end-use sectors, low-carbon steel is poised to play a critical role in the global decarbonization effort. However, the industry will need to overcome several challenges related to costs, infrastructure, and technology readiness in order to fully realize the potential of green steel.

"The Global Market for Green (Low-Carbon) Steel 2025-2035" is a comprehensive market report analyzing the rapidly evolving green steel industry, focusing on current and emerging low-carbon production technologies, key players, market trends, challenges, and opportunities.

The report provides an in-depth look at the global green steel market, starting with an introduction to current steelmaking processes and the industry's decarbonization targets and policies. It explores the properties of green steel, and analyzes various clean production technologies including their advantages, limitations and technology readiness levels (TRLs). Key technologies covered include hydrogen DRI, molten oxide electrolysis, CCUS, biochar, hydrogen plasma reduction, and more.

The market for green steel is segmented by major end-use industries such as automotive, construction, consumer appliances, machinery, rail, packaging and electronics. For each industry, the report provides an overview, green steel applications, and case studies. Profiles of more than 40 producers and technology providers are included.

Current and planned green steel production capacity is mapped globally, with a focus on key players and projects in regions including Europe, North America, China, India, Asia-Pacific, Middle East & Africa, and South America. The competitive landscape is analyzed, highlighting major steel producers, technology providers, and partnerships across the value chain.

The report includes market forecasts to 2035, with projections for green steel production capacity, volumes, market value, and regional demand. Granular data is provided for production versus demand through 2035, as well as forecast revenues by end-use industry and region. This enables industry stakeholders to identify target markets and applications where green steel demand is predicted to surge over the coming decade.

Beyond an analysis of market drivers and trends, the report delves into the challenges facing the green steel industry as it scales up novel technologies and competes with incumbent production processes. Regulatory and cost barriers are examined, as well as issues around technology readiness and raw material availability.

The report serves as an essential resource for companies across the green steel value chain, including iron and steel producers, hydrogen and renewable energy providers, technology developers, plant equipment suppliers, end-users, investors, and government stakeholders. It provides the data and insights needed to make informed decisions as the green steel market grows from a niche to the mainstream over the next decade.

Key topics covered in the report include:

  • Introduction to green steel, its properties and emissions reduction potential
  • Decarbonization targets, policies and carbon pricing impacting the steel industry
  • Analysis of low-carbon production technologies including hydrogen DRI, CCUS, electrolysis, etc.
  • Segmentation of the green steel market by end-use industry
  • Profiles of major green steel producers and clean technology providers. Companies profiled include Algoma Steel, Aperam BioEnergia, ArcelorMittal SA, Blastr Green Steel, Boston Metal, China Baowu Steel Group, Compania de Aceros del Pacifico (CAP), Electra Steel, Emirates Steel Arkan, GravitHy, Georgsmarienhutte Holding GmbH, Greeniron H2 AB, HBIS Group, Helios, Hybrit Development AB, Hybar LLC, Hydnum Steel, Hyundai Steel, JFE Steel, Jindal Shadeed Group, JSW Steel, Kobe Steel, Ltd., Liberty Steel Group, Limelight Steel, Magsort Oy, Meranti Green Steel, Mitsui, Nippon Steel Corporation and more
  • Global mapping of low-carbon steel production capacity and investments to 2035
  • Challenges and barriers to market growth
  • Granular market forecasts for green steel supply, demand and revenues by end-use and region
  • Future green steel market outlook to 2035

The green steel revolution is just beginning, and this report is an invaluable guide to help navigate the rapidly evolving market landscape through 2035. It is a must-read for anyone looking to understand and capitalize on the sustainable transformation of one of the world's most carbon-intensive industries.

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Current Steelmaking processes
  • 1.2. "Double carbon" (carbon peak and carbon neutrality) goals and ultra-low emissions requirements
  • 1.3. What is green steel?
    • 1.3.1. Properties
    • 1.3.2. Decarbonization target and policies
      • 1.3.2.1. EU Carbon Border Adjustment Mechanism (CBAM)
    • 1.3.3. Advances in clean production technologies
  • 1.4. Production technologies
    • 1.4.1. The role of hydrogen
    • 1.4.2. Comparative analysis
    • 1.4.3. Hydrogen Direct Reduced Iron (DRI)
    • 1.4.4. Electrolysis
    • 1.4.5. Carbon Capture, Utilization and Storage (CCUS)
    • 1.4.6. Biochar replacing coke
    • 1.4.7. Hydrogen Blast Furnace
    • 1.4.8. Renewable energy powered processes
    • 1.4.9. Flash ironmaking
    • 1.4.10. Hydrogen Plasma Iron Ore Reduction
    • 1.4.11. Ferrous Bioprocessing
    • 1.4.12. Microwave Processing
    • 1.4.13. Additive Manufacturing
    • 1.4.14. Technology readiness level (TRL)
  • 1.5. Advanced materials in green steel
    • 1.5.1. Composite electrodes
    • 1.5.2. Solid oxide materials
    • 1.5.3. Hydrogen storage metals
    • 1.5.4. Carbon composite steels
    • 1.5.5. Coatings and membranes
    • 1.5.6. Sustainable binders
    • 1.5.7. Iron ore catalysts
    • 1.5.8. Carbon capture materials
    • 1.5.9. Waste gas utilization
  • 1.6. Advantages and disadvantages of green steel
  • 1.7. Markets and applications
  • 1.8. Energy Savings and Cost Reduction in Steel Production
  • 1.9. Digitalization
  • 1.10. Biomass Steel Production and Sustainable Green Steel Production Chain

2. THE GLOBAL MARKET FOR GREEN STEEL

  • 2.1. Global steel production
    • 2.1.1. Steel prices
    • 2.1.2. Green steel prices
  • 2.2. Green steel plants and production, current and planned
  • 2.3. Market map
  • 2.4. SWOT analysis
  • 2.5. Market trends and opportunities
  • 2.6. Industry developments, funding and innovation 2022-2025
  • 2.7. Market growth drivers
  • 2.8. Market challenges
  • 2.9. End-use industries
    • 2.9.1. Automotive
      • 2.9.1.1. Market overview
      • 2.9.1.2. Applications
    • 2.9.2. Construction
      • 2.9.2.1. Market overview
      • 2.9.2.2. Applications
    • 2.9.3. Consumer appliances
      • 2.9.3.1. Market overview
      • 2.9.3.2. Applications
    • 2.9.4. Machinery
      • 2.9.4.1. Market overview
      • 2.9.4.2. Applications
    • 2.9.5. Rail
      • 2.9.5.1. Market overview
      • 2.9.5.2. Applications
    • 2.9.6. Packaging
      • 2.9.6.1. Market overview
      • 2.9.6.2. Applications
    • 2.9.7. Electronics
      • 2.9.7.1. Market overview
      • 2.9.7.2. Applications

3. GLOBAL MARKET PRODUCTION AND DEMAND

  • 3.1. Production Capacity 2020-2035
  • 3.2. Production vs. Demand 2020-2035
  • 3.3. Revenues 2020-2035
    • 3.3.1. By end-use industry
    • 3.3.2. By region
      • 3.3.2.1. North America
      • 3.3.2.2. Europe
      • 3.3.2.3. China
      • 3.3.2.4. India
      • 3.3.2.5. Asia-Pacific (excl. China)
      • 3.3.2.6. Middle East & Africa
      • 3.3.2.7. South America
  • 3.4. Competitive landscape
  • 3.5. Future market outlook

4. COMPANY PROFILES. (46 company profiles)

5. RESEARCH METHODOLOGY

6. LIST OF ACRONYMS

7. REFERENCES

List of Tables

  • Table 1. Properties of Green steels
  • Table 2. Global Decarbonization Targets and Policies related to Green Steel
  • Table 3. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM)
  • Table 4. Hydrogen-based steelmaking technologies
  • Table 5. Comparison of green steel production technologies
  • Table 6. Advantages and disadvantages of each potential hydrogen carrier
  • Table 7. CCUS in green steel production
  • Table 8. Biochar in steel and metal
  • Table 9. Hydrogen blast furnace schematic
  • Table 10. Applications of microwave processing in green steelmaking
  • Table 11. Applications of additive manufacturing (AM) in steelmaking
  • Table 12. Technology readiness level (TRL) for key green steel production technologies
  • Table 13. Coatings and membranes in green steel production
  • Table 14. Advantages and disadvantages of green steel
  • Table 15. Markets and applications: green steel
  • Table 16. Green Steel Plants - Current and Planned Production
  • Table 17. Industry developments and innovation in Green steel, 2022-2025
  • Table 18. Summary of market growth drivers for Green steel
  • Table 19. Market challenges in Green steel
  • Table 20. Supply agreements between green steel producers and automakers
  • Table 21. Applications of green steel in the automotive industry
  • Table 22. Applications of green steel in the construction industry
  • Table 23. Applications of green steel in the consumer appliances industry
  • Table 24. Applications of green steel in machinery
  • Table 25. Applications of green steel in the rail industry
  • Table 26. Applications of green steel in the packaging industry
  • Table 27. Applications of green steel in the electronics industry
  • Table 28. Low-Emissions Steel Production Capacity 2020-2035 (Million Metric Tons)
  • Table 29. Low-Emissions Steel Production vs. Demand 2020-2035 (Million Metric Tons)
  • Table 30. Low-Emissions Steel Market Revenues 2020-2035
  • Table 31. Demand for Low-Emissions Steel by End-Use Industry 2020-2035 (Million Metric Tons)
  • Table 32. Regional Demand for Low-Emissions Steel 2020-2035 (Million Metric Tons)
  • Table 33. Regional Demand for Low-Emissions Steel 2020-2035, NORTH AMERICA (Million Metric Tons)
  • Table 34. Regional Demand for Low-Emissions Steel 2020-2035, EUROPE (Million Metric Tons)
  • Table 35. Regional Demand for Low-Emissions Steel 2020-2035, CHINA (Million Metric Tons)
  • Table 36. Regional Demand for Low-Emissions Steel 2020-2035, INDIA (Million Metric Tons)
  • Table 37. Regional Demand for Low-Emissions Steel 2020-2035, ASIA-PACIFIC (excluding China) (Million Metric Tons)
  • Table 38. Regional Demand for Low-Emissions Steel 2020-2035, MIDDLE EAST & AFRICA (Million Metric Tons)
  • Table 39. Regional Demand for Low-Emissions Steel 2020-2035, SOUTH AMERICA (Million Metric Tons)
  • Table 40. Key players in Green steel, location and production methods

List of Figures

  • Figure 1. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes
  • Figure 2. Transition to hydrogen-based production
  • Figure 3. CO2 emissions from steelmaking (tCO2/ton crude steel)
  • Figure 4. CO2 emissions of different process routes for liquid steel
  • Figure 5. Hydrogen Direct Reduced Iron (DRI) process
  • Figure 6. Molten oxide electrolysis process
  • Figure 7. Steelmaking with CCS
  • Figure 8. Flash ironmaking process
  • Figure 9. Hydrogen Plasma Iron Ore Reduction process
  • Figure 10. Green steel market map
  • Figure 11. SWOT analysis: Green steel
  • Figure 12. Low-Emissions Steel Production Capacity 2020-2035 (Million Metric Tons)
  • Figure 13. ArcelorMittal decarbonization strategy
  • Figure 14. HYBRIT process schematic
  • Figure 15. Schematic of HyREX technology
  • Figure 16. EAF Quantum