鈣鈦礦材料·技術的全球市場(2025年~2035年)
市場調查報告書
商品編碼
1642229

鈣鈦礦材料·技術的全球市場(2025年~2035年)

The Global Market for Perovskite Materials and Technologies 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 177 Pages, 57 Tables, 48 Figures | 訂單完成後即時交付

價格

全球鈣鈦礦材料和技術市場呈現快速成長,並引起了全球研究人員、產業和投資者的廣泛關注。鈣鈦礦是一類具有獨特晶體結構的材料,由於其出色的光電特性、低成本生產和多功能性,已成為各種應用的有希望的解決方案。鈣鈦礦市場的關鍵驅動力是對高效、經濟和永續能源解決方案的日益增長的需求。鈣鈦礦太陽能電池 (PSC) 近年來取得了長足進步,實驗室條件下的能量轉換效率現已超過 25%(2009 年為 3%)。這使得 PSC 成為傳統矽基太陽能的強大課題者。透過低溫、基於溶液的製程生產鈣鈦礦薄膜的能力使其在可擴展製造和與柔性基板整合方面具有吸引力。其生產成本低、節能,對柔性及玻璃基板的適應性強。

除了太陽能發電外,鈣鈦礦還用於發光二極管(LED)、光電探測器、感測器、電晶體、儲存設備和催化劑。鈣鈦礦 LED(稱為 PeLED)非常適合顯示器和照明應用,因為它們具有高色彩純度、可調且製造成本低廉。基於鈣鈦礦的光電探測器和感測器表現出高靈敏度、寬光譜響應和快速響應時間,使其成為成像、監視和環境監測應用的有希望的選擇。

鈣鈦礦市場仍處於早期階段。然而,隨著鈣鈦礦基產品的普及和製造流程的擴大,預計未來幾年市場將大幅成長。預計2035年全球鈣鈦礦市場規模將超過100億美元,其中光電領域佔最大佔有率。鈣鈦礦材料和技術的未來前景光明,正在進行的研究重點是提高其穩定性、耐用性和性能。將鈣鈦礦與矽和CIGS等其他成熟技術結合的串聯架構預計將提高電力轉換效率。太陽能服裝和感測器等靈活、可穿戴的鈣鈦礦設備也即將問世。與傳統材料相比,鈣鈦礦量子點具有更好的色域和能源效率,因其在顯示和照明應用方面的潛力而備受關注。

然而,課題依然存在,包括長期穩定性、效率、可擴展性以及鈣鈦礦配方中存在的有毒鉛。研究人員正在積極探索無鉛替代品和封裝技術來解決這些問題。

本報告分析了全球鈣鈦礦材料和技術市場,提供了有關鈣鈦礦材料、其特性、應用、合成方法、市場推動因素和阻礙因素、區域市場預測、競爭格局和未來機會的資訊。

目錄

第1章 摘要整理

  • 市場概要
  • 技術藍圖
  • 市場促進因素與阻礙因素
  • 市場機會與未來趨勢
  • 市場預測
  • 法規

第2章 簡介

第3章 鈣鈦礦材料

  • 無機鈣鈦礦
  • 有機無機混合鈣鈦礦

第4章 鈣鈦礦的合成法和加工法

  • 概要
  • 溶液為基礎的方法
  • 氣相沉積法
  • 其他合成方法
  • 用於可擴展處理的沉積技術
  • 卷對卷處理
  • 合成後處理技術
  • 沉積法的比較

第5章 鈣鈦礦的用途和最終用途市場

  • 太陽能光伏發電
  • 發光元件
  • 光電檢測器,感測器
  • 電晶體,存儲裝置
  • 催化劑,光觸媒
  • 熱電
  • 其他的新用途

第6章 企業簡介(企業65公司的簡介)

第7章 附錄

第8章 參考文獻

The global market for perovskite materials and technologies is experiencing rapid growth and attracting significant attention from researchers, industries, and investors worldwide. Perovskites, a class of materials with a unique crystalline structure, have emerged as a promising solution for various applications due to their exceptional optoelectronic properties, low-cost production, and versatility. The primary driver of the perovskite market is the increasing demand for high-efficiency, cost-effective, and sustainable energy solutions. Perovskite solar cells (PSCs) have demonstrated remarkable progress in recent years, with power conversion efficiencies now exceeding 25% (from 3% in 2009) in laboratory settings. This positions PSCs as a potential challenger to traditional silicon-based photovoltaics. The ability to produce perovskite films through low-temperature, solution-based processes makes them attractive for scalable manufacturing and integration with flexible substrates. They offer low production costs, high energy efficiency, and adaptability for flexible and glass substrates.

Beyond photovoltaics, perovskites are finding applications in light-emitting devices (LEDs), photodetectors, sensors, transistors, memory devices, and catalysis. Perovskite LEDs, known as PeLEDs, offer high color purity, tunability, and low-cost fabrication, making them suitable for display and lighting applications. Perovskite-based photodetectors and sensors exhibit high sensitivity, wide spectral response, and fast response times, with potential uses in imaging, surveillance, and environmental monitoring.

The perovskite market is still in its early stages. However, the market is expected to grow significantly in the coming years, driven by the increasing adoption of perovskite-based products and the scaling up of manufacturing processes. The global perovskite market will exceed $10 billion by 2035, with the photovoltaics segment accounting for the largest share. The future outlook for perovskite materials and technologies is promising, with ongoing research focused on improving stability, durability, and performance. Tandem architectures, combining perovskites with other established technologies like silicon or CIGS, are expected to push power conversion efficiencies. Flexible and wearable perovskite devices, such as solar-powered clothing and sensors, are also on the horizon. Perovskite quantum dots are attracting interest for their potential in display and lighting applications, offering improved color gamut and energy efficiency compared to conventional materials.

However, challenges remain in terms of long-term stability/efficiency, scalability, and the presence of toxic lead in some perovskite formulations. Researchers are actively exploring lead-free alternatives and encapsulation techniques to address these concerns.

The report covers the following key aspects:

  • Overview of perovskite materials and their unique properties
    • Types of perovskites: inorganic, hybrid organic-inorganic, and perovskite quantum dots
    • Advantages of perovskites over traditional materials
  • Perovskite applications and end-use markets
    • Photovoltaics: perovskite solar cells (PSCs), tandem solar cells, and building-integrated photovoltaics (BIPV)
    • Light-emitting devices: perovskite LEDs (PeLEDs), white light-emitting devices, lasers, and optical amplifiers
    • Photodetectors and sensors: visible light, X-ray, gamma-ray, chemical, and humidity sensors
    • Transistors and memory devices: field-effect transistors (FETs) and resistive random-access memory (RRAM)
    • Catalysis and photocatalysis: water splitting, hydrogen production, CO2 reduction, and pollutant degradation
    • Thermoelectrics and other emerging applications
  • Perovskite synthesis and processing methods
    • Solution-based methods: one-step deposition, two-step sequential deposition, and anti-solvent assisted crystallization
    • Vapor deposition methods: thermal evaporation, co-evaporation, and chemical vapor deposition (CVD)
    • Scalable processing techniques: inkjet printing, blade coating, slot-die coating, and spray coating
    • Roll-to-roll processing for high-volume production and cost reduction
    • Post-synthesis processing techniques: thermal annealing, solvent annealing, and pressure-assisted annealing
  • Market drivers and restraints
  • Market forecasts and regional analysis
    • Global perovskite materials and technologies market size and growth rate from 2025 to 2035
    • Market segmentation by application, material type, and geographic region
    • Detailed market forecasts for North America, Europe, Asia-Pacific, and the Rest of the World
  • Competitive landscape and company profiles
    • Profiles of over 65 key players in the perovskite industry, including material suppliers and device manufacturers. Companies profiled include Aisin Corporation, Anker, Ascent Solar, Astronergy, Avantama, Beyond Silicon, Caelux, BrightComSol, Canadian Solar, Canon, China Huaneng Group Co., Ltd., Cosmos Innovation, CubicPV, DaZheng, Dyenamo, EneCoat Technologies, Energy Materials Corporation, Ergis Group, Flexell Space, GCL, Green Science Alliance Co., Ltd., Hangzhou Xianna Optoelectronic Technology Co., Ltd., Hanwha Qcells, Hefei BOE Solar Technology, Helio Display Materials, HETE Photo Electricity, Hiking PV, Homerun Resources, Huasun Energy (Ningxia Huasun New Materials Technology), JA Solar, Jiangsu Xiehang Energy Technology (Fellow Energy/Xiehang Energy), Jinko Solar, Kaneka Corporation, Koreakiyon, LONGi Green Energy Technology, Mellow Energy, Microquanta Semiconductor, Nanolumi, Nexwafe, Opteria, Oxford PV, PEROLED Korea, PeroNova, Perovskia Solar, Power Roll, PXP, Renshine Solar, RISEN, Saule Technologies, SCHOTT, SEI Energy Technology (Jiaxing), Sekisui Chemical Co Ltd, SN Display Co., Ltd., Sofab Inks, Solaronix, Solaveni GmbH, Solaires Enterprises, and more....
    • Analysis of their strategies, partnerships, and product offerings
  • Regulations and environmental considerations
  • Future trends and opportunities
    • Tandem solar cells and perovskite-silicon integration
    • Flexible and wearable perovskite devices
    • Perovskite quantum dots for displays and lighting
    • Perovskite-based sensors for IoT and smart cities
    • Recyclable and eco-friendly perovskite materials

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
  • 1.2. Technology roadmap
  • 1.3. Market drivers and restraints
    • 1.3.1. Market Drivers
      • 1.3.1.1. Increasing Demand for Renewable Energy
      • 1.3.1.2. Declining Costs of Perovskite Production
      • 1.3.1.3. Government Policies and Incentives
      • 1.3.1.4. Advancements in Perovskite Stability and Efficiency
    • 1.3.2. Market Restraints
      • 1.3.2.1. Lead Toxicity Concerns
      • 1.3.2.2. Stability and Degradation Issues
      • 1.3.2.3. Scalability and Manufacturing Challenges
      • 1.3.2.4. Competition from Established Technologies
  • 1.4. Market opportunities and future trends
    • 1.4.1. Tandem Solar Cells and Perovskite-Silicon Integration
    • 1.4.2. Flexible and Wearable Perovskite Devices
    • 1.4.3. Perovskite Quantum Dots for Displays and Lighting
    • 1.4.4. Perovskite-Based Sensors for IoT and Smart Cities
    • 1.4.5. Perovskite Materials for Neuromorphic Computing
    • 1.4.6. Recyclable and Eco-Friendly Perovskites
  • 1.5. Market forecasts
    • 1.5.1. Global Perovskite Materials and Technologies Market Size and Growth Rate
    • 1.5.2. Market Forecasts by Application
    • 1.5.3. Market Forecasts by Region
      • 1.5.3.1. North America
      • 1.5.3.2. Europe
      • 1.5.3.3. China
      • 1.5.3.4. Asia-Pacific
      • 1.5.3.5. Rest of World
  • 1.6. Regulations
    • 1.6.1. Regulations and Standards for Perovskite Materials
    • 1.6.2. Toxicity and Environmental Concerns
    • 1.6.3. Disposal and Recycling Strategies
    • 1.6.4. Occupational Health and Safety Measures

2. INTRODUCTION

  • 2.1. What are Perovskites?
    • 2.1.1. Perovskite Structure and Composition
    • 2.1.2. Types of Perovskites
      • 2.1.2.1. Inorganic Perovskites
      • 2.1.2.2. Hybrid Organic-Inorganic Perovskites
    • 2.1.3. Perovskite Properties
  • 2.2. Advantages of Perovskite Materials
  • 2.3. Challenges and Limitations

3. PEROVSKITE MATERIALS

  • 3.1. Inorganic Perovskites
    • 3.1.1. Lead-Based Perovskites
      • 3.1.1.1. Methylammonium Lead Triiodide (MAPbI3)
      • 3.1.1.2. Formamidinium Lead Triiodide (FAPbI3)
      • 3.1.1.3. Cesium Lead Triiodide (CsPbI3)
    • 3.1.2. Lead-Free Perovskites
      • 3.1.2.1. Tin-Based Perovskites
      • 3.1.2.2. Bismuth-Based Perovskites
      • 3.1.2.3. Double Perovskites
    • 3.1.3. Other Inorganic Perovskites
  • 3.2. Hybrid Organic-Inorganic Perovskites
    • 3.2.1. 3D Hybrid Perovskites
    • 3.2.2. 2D Hybrid Perovskites (Ruddlesden-Popper Phases)
    • 3.2.3. Quasi-2D Hybrid Perovskites
    • 3.2.4. 1D Hybrid Perovskites
    • 3.2.5. Perovskite Quantum Dots
      • 3.2.5.1. Properties
      • 3.2.5.2. Comparison to conventional quantum dots
      • 3.2.5.3. Synthesis methods
      • 3.2.5.4. Applications
      • 3.2.5.5. Companies

4. PEROVSKITE SYNTHESIS AND PROCESSING METHODS

  • 4.1. Overview
  • 4.2. Solution-Based Methods
    • 4.2.1. One-Step Deposition
    • 4.2.2. Two-Step Sequential Deposition
    • 4.2.3. Anti-Solvent Assisted Crystallization
    • 4.2.4. Vapor-Assisted Solution Process
    • 4.2.5. Spin Coating
  • 4.3. Vapor Deposition Methods
    • 4.3.1. Thermal Evaporation
    • 4.3.2. Co-Evaporation
    • 4.3.3. Chemical Vapor Deposition (CVD)
    • 4.3.4. Hybrid Chemical Vapor Deposition
    • 4.3.5. Aerosol Assisted Chemical Vapor Deposition
    • 4.3.6. Sputtering
  • 4.4. Other Synthesis Methods
    • 4.4.1. Mechanochemical Synthesis
    • 4.4.2. Combustion Synthesis
    • 4.4.3. Hydrothermal Synthesis
  • 4.5. Deposition Techniques for Scalable Processing
    • 4.5.1. Inkjet Printing
    • 4.5.2. Blade Coating
    • 4.5.3. Slot-Die Coating
    • 4.5.4. Spray Coating
  • 4.6. Roll-to-Roll Processing
    • 4.6.1. Overview of Roll-to-Roll Printing for Perovskites
    • 4.6.2. Advantages for High-Volume Production and Cost Reduction
    • 4.6.3. Challenges in Perovskite Film Deposition
    • 4.6.4. Examples of Roll-to-Roll Perovskite Device Fabrication
  • 4.7. Post-Synthesis Processing Techniques
    • 4.7.1. Thermal Annealing
    • 4.7.2. Solvent Annealing
    • 4.7.3. Pressure-Assisted Annealing
  • 4.8. Comparison of Deposition Methods
    • 4.8.1. Overview of Method Advantages and Limitations
    • 4.8.2. Guidelines for Choosing a Perovskite Deposition Method

5. PEROVSKITE APPLICATIONS AND END-USE MARKETS

  • 5.1. Photovoltaics
    • 5.1.1. Global solar power market
    • 5.1.2. Photovoltaic (PV) commercialization
    • 5.1.3. Solar photovoltaic (PV) investment landscape
    • 5.1.4. Thin film solar cells
      • 5.1.4.1. Thin film solar PV market
      • 5.1.4.2. Perovskite photovoltaics (PV)
    • 5.1.5. Thin Film Perovskite Solar Cells (PSCs)
      • 5.1.5.1. Applications
      • 5.1.5.2. The n-i-p and p-i-n configurations
      • 5.1.5.3. Mesoporous scaffolds
      • 5.1.5.4. Perovskite solar technologies opportunity
      • 5.1.5.5. Advantages
      • 5.1.5.6. Costs
      • 5.1.5.7. PSC Architectures and Device Structures
      • 5.1.5.8. Advantages of PSCs over Silicon Solar Cells
      • 5.1.5.9. Challenges and Stability Issues
      • 5.1.5.10. Degradation
      • 5.1.5.11. Additive engineering
      • 5.1.5.12. Glass-glass encapsulation
      • 5.1.5.13. Polymer encapsulation
      • 5.1.5.14. Passivation layers
      • 5.1.5.15. Perovskite PV value chain
    • 5.1.6. Tandem Solar Cells
      • 5.1.6.1. Applications
        • 5.1.6.1.1. Building integration
        • 5.1.6.1.2. Solar farms
      • 5.1.6.2. Properties
      • 5.1.6.3. Perovskite/silicon tandem solar cells
      • 5.1.6.4. Configurations
      • 5.1.6.5. Challenges
      • 5.1.6.6. Companies
      • 5.1.6.7. All Perovskite Tandem Solar Cells
        • 5.1.6.7.1. Overview
        • 5.1.6.7.2. Manufacturing
        • 5.1.6.7.3. Band gap tuning
        • 5.1.6.7.4. Advantages and limitations
        • 5.1.6.7.5. Companies
    • 5.1.7. Materials
      • 5.1.7.1. Substrate materials
        • 5.1.7.1.1. Rigid glass substrates
        • 5.1.7.1.2. Flexible glass substrates
        • 5.1.7.1.3. Plastic substrates
        • 5.1.7.1.4. Metal Foil Substrates
        • 5.1.7.1.5. Transparent conducting films
    • 5.1.8. Rooftop installation
    • 5.1.9. Space and Aerospace Applications
    • 5.1.10. Indoor energy harvesting
    • 5.1.11. Automotive
    • 5.1.12. Agrivoltaics
    • 5.1.13. Market players
    • 5.1.14. Global perovskite PV market to 2035
  • 5.2. Light-Emitting Devices
    • 5.2.1. Light emitting diodes market
    • 5.2.2. Perovskite Light-Emitting Diodes (PeLEDs)
      • 5.2.2.1. Applications
    • 5.2.3. White Light-Emitting Devices
    • 5.2.4. Lasers and Optical Amplifiers
  • 5.3. Photodetectors and Sensors
    • 5.3.1. Thin film photodetectors market
    • 5.3.2. Visible Light Photodetectors
    • 5.3.3. X-Ray Detectors
    • 5.3.4. Gamma-Ray Detectors
    • 5.3.5. Chemical Sensors
    • 5.3.6. Humidity Sensors
  • 5.4. Transistors and Memory Devices
    • 5.4.1. Field-Effect Transistors (FETs)
    • 5.4.2. Resistive Random-Access Memory (RRAM)
  • 5.5. Catalysis and Photocatalysis
    • 5.5.1. Water Splitting and Hydrogen Production
    • 5.5.2. CO2 Reduction and Conversion
    • 5.5.3. Organic Synthesis
    • 5.5.4. Pollutant Degradation
  • 5.6. Thermoelectrics
  • 5.7. Other Emerging Applications
    • 5.7.1. Piezoelectrics
    • 5.7.2. Superconductors
    • 5.7.3. Spintronics
    • 5.7.4. Batteries and Supercapacitors

6. COMPANY PROFILES (65 company profiles)

7. APPENDICES

  • 7.1. List of Terms and Abbreviations
  • 7.2. Research Methodology

8. REFERENCES

List of Tables

  • Table 1. Market overview for Perovskite Materials and Technologies
  • Table 2. Market drivers for perovskite materials and technologies
  • Table 3. Production Cost of Perovskites
  • Table 4. Market restraints for perovskite materials and technologies:
  • Table 5. Perovskite materials and technologies versus established technologies, by market
  • Table 6. Global Perovskite Market Size (Billion USD)
  • Table 7. Perovskite Materials and Technologies Market Forecasts by Application, 2022-2035 (Millions USD)
  • Table 8. Perovskite Materials and Technologies Market Forecasts by Region, 2022-2035 (Millions USD)
  • Table 9. Perovskite PV companies in China
  • Table 10. Regulations and Standards for Perovskite Materials
  • Table 11. Disposal and Recycling Strategies
  • Table 12. Occupational Health and Safety Measures
  • Table 13. Types of Perovskites
  • Table 14. Perovskite Properties
  • Table 15. Advantages of Perovskite Materials
  • Table 16. Challenges and Limitations
  • Table 17. Perovskite quantum dots (PQDs) overview
  • Table 18. Comparative properties of conventional QDs and Perovskite QDs
  • Table 19. Synthesis Methods for Perovskite Quantum Dots
  • Table 20. Applications of perovskite QDs
  • Table 21. Properties of perovskite QLEDs comparative to OLED and QLED
  • Table 22. Perovskite-based QD producers
  • Table 23. Perovskite synthesis and processing methods
  • Table 24. Perovskite Deposition Methods Comparison
  • Table 25. Overview of Perovskite Materials and Technologies Applications
  • Table 26. Key Solar Cell Performance Metrics
  • Table 27. Total installed solar capacity by technology type, 2024-2035
  • Table 28. Global Solar Installations by Region (2023)
  • Table 29. Thin Film Technology Comparison
  • Table 30. Benchmarking of solar technologies
  • Table 31. Solar Technology Development Status Roadmap (2020-2035)
  • Table 32. Perovskite solar power funding and projects
  • Table 33. n-i-p vs p-i-n configurations
  • Table 34. Perovskite vs. Other Thin Film Technologies Comparison
  • Table 35. Thin-film perovskite cost breakdown
  • Table 36. Applications of perovskite/silicon tandem PV
  • Table 37. Thin film vs tandem perovskite PV
  • Table 38. Tandem cell fabrication process:
  • Table 39. Perovskite/silicon tandem PV market players
  • Table 40. Companies in all-perovskite tandem technology
  • Table 41. Materials for Perovskite PV
  • Table 42. Substrate materials for solar cells
  • Table 43. Cost and Performance Comparison of Substrate Materials
  • Table 44. Benchmarking of Substrate Materials for Perovskite PV
  • Table 45. TCF Material Options and Key Properties
  • Table 46. Perovskite PV Market Players Overview
  • Table 47. Global installed perovskite PV capacity by application, 2023-2035
  • Table 48. Global perovskite PV annual revenues, 2023-2035 (Millions USD)
  • Table 49. Global solar farm installation capacity, 2024-2035 (GW)
  • Table 50. Global Perovskite Residential Rooftop PV Revenues (Million USD)
  • Table 51. Applications of Perovskites in Light-Emitting Devices
  • Table 52. Perovskite Light-Emitting Diodes (PeLEDs) Properties and Applications
  • Table 53. Applications of Perovskites in Photodetectors and Sensors
  • Table 54. Photodetector applications
  • Table 55. Applications of Perovskites in Transistors and Memory Devices
  • Table 56. Applications of Perovskites in Catalysis and Photocatalysis
  • Table 57. List of Terms and Abbreviations

List of Figures

  • Figure 1. Technology roadmap for perovskite materials
  • Figure 2. Global Perovskite Market Size (Billion USD)
  • Figure 3. Perovskite Materials and Technologies Market Forecasts by Application, 2022-2035
  • Figure 4. Perovskite Materials and Technologies Market Forecasts by Region, 2022-2035
  • Figure 5. Perovskite solution
  • Figure 6. Perovskite structure
  • Figure 7. Perovskite solar cell by Toshiba
  • Figure 8. A pQLED device structure
  • Figure 9. Roadmap for perovskite QDs
  • Figure 10. SWOT analysis for perovskite QDs
  • Figure 11. Perovskite quantum dots under UV light
  • Figure 12. Roll-to-roll manufacturing process
  • Figure 13. Total installed solar capacity by technology type, 2024-2035
  • Figure 14. Thin Film Perovskite PV Roadmap
  • Figure 15. Perovskite solar cell
  • Figure 16. Devices structure for a mesoporous perovskite solar cell structure. In the inset, the electron charge transport processes for injecting and non-injecting mesoporous materials are represented and b structure of a thin film-like perovskite solar cells
  • Figure 17. SWOT analysis of thin film perovskite PV
  • Figure 18. Comparison of silicon-based solar cells and perovskite solar cells
  • Figure 19. Perovskite PV value chain
  • Figure 20. Perovskite/silicon tandem PV roadmap
  • Figure 21. Perovskite/silicon tandem PV SWOT analysis
  • Figure 22. Shape of the deployment module in which the "space tandem flexible solar cell" panel developed by Hanwha System's in-house venture Flexel Space is unfolded like a scroll
  • Figure 23. Lightyear O solar powered car
  • Figure 24. Global installed perovskite PV capacity by application, 2023-2035
  • Figure 25. Global perovskite PV annual revenues, 2023-2035
  • Figure 26. Global solar farm installation capacity, 2024-2035
  • Figure 27. Global Perovskite residential rooftop PV revenues, 2024-2035
  • Figure 28. Working principle of perovskite LEDs
  • Figure 29. Perovskite absorption spectrum
  • Figure 30. Active Surfaces 4-by-4-inch photovoltaic devices
  • Figure 31. Aisin spray perovskite materials solar cell. (Source) Aisin Corporation
  • Figure 32. Anker solar umbrella
  • Figure 33. Caelux perovskite solar cell
  • Figure 34. Perovskite solar cells (left) could achieve mass production by adding a coating developed by Canon to their structure (right)
  • Figure 35. EneCoat Technologies Co., Ltd. perovskite solar cells
  • Figure 36. EMC Transparent Conductor Printing
  • Figure 37. QD Barrier film
  • Figure 38. Kaneka Corporation built-in perovskite solar cells
  • Figure 39. Mellow Energy ML-Flex panel
  • Figure 40. Perovskia Solar printed perovskite cells
  • Figure 41. PXP Corporation flexible chalcopyrite photovoltaic modules
  • Figure 42. PESL (Perovskite Electronic Shelf Label)
  • Figure 43. Uchisaiwaicho 1-chome Urban District Development Project
  • Figure 44. Sekisui film-type perovskite solar cells
  • Figure 45. Solar Ink(TM)
  • Figure 46. Swift Solar panel
  • Figure 47. Tandem metal-halide perovskite solar panels
  • Figure 48. UtmoLight 450W perovskite solar module