SLAM技術在影像應用中的成長機會分析
市場調查報告書
商品編碼
1415520

SLAM技術在影像應用中的成長機會分析

Growth Opportunity Analysis of SLAM Technology in Imaging Applications

出版日期: | 出版商: Frost & Sullivan | 英文 55 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

測繪、測量和基於定位的服務和應用將改變行業

成像應用中的同步立體定位映射 (SLAM) 技術依賴感測器技術和軟體演算法。 SLAM 使自動駕駛汽車、機器人和無人機等自主系統能夠同時繪製周圍環境的地圖、導航、高效操作並估計其在地圖上的位置。 SLAM 利用慣性測量單元、攝影機系統和LiDAR來收集周圍環境的資料。透過分析感測器資料,SLAM 演算法創建環境地圖並估計位置和方向參數。演算法很複雜,計算成本也很高,但近幾十年來取得了巨大進步。

SLAM 是廣泛影像處理應用的重要技術,包括機器人、擴增實境(AR)、虛擬實境 (VR) 和自動駕駛汽車,而且市場正在迅速擴大。 SLAM 使城市規劃者、施工經理和測量員能夠輕鬆創建具有所需精度的大型景觀 3D 地圖。

本次調查的內容

  • SLAM技術在影像應用中概述
  • 影像應用中SLAM演算法的類型
  • SLAM演算法在影像處理應用上的比較分析
  • 感測器融合對基於 SLAM 的成像系統的影響和意義
  • SLAM技術在醫學影像、衛星、機器人和AR/VR應用的影響分析
  • SLAM 技術的產業新使用案例
  • 主要成長機會、經營模式與未來方向

目錄

戰略問題

  • 為什麼成長如此困難?
  • The Strategic Imperative 8(TM)
  • 同步立體定位 (SLAM) 產業三大策略挑戰的影響
  • 成長機會是Growth Pipeline Engine(TM)
  • 調查方法
  • 成長環境
  • 技術吸引力儀表板

成長機會分析

  • 分析範圍
  • 影像應用的SLAM演算法分割
  • 生長促進因子
  • 成長抑制因素

技術狀況評估

  • SLAM技術在影像應用中概述
  • 用於成像應用的 SLAM 演算法類型
  • 各種SLAM演算法的優缺點
  • 為成像應用選擇 SLAM 演算法時要考慮的因素
  • 影像處理應用的SLAM演算法比較分析
  • SLAM 感測器融合
  • SLAM 績效指標 - 準備、評估和測試階段
  • 專利檢索的優先領域
  • 資金籌措計畫及重點領域

SLAM技術在影像應用的產業影響分析

  • SLAM技術在衛星和醫學影像應用中的影響分析
  • 新興使用案例- 衛星和醫學成像中的 SLAM 技術
  • SLAM技術在機器人應用的應用
  • SLAM技術在機器人應用中的影響分析
  • 新使用案例- 機器人 SLAM 技術
  • AR/VR應用中的SLAM技術
  • SLAM技術對AR/VR應用的影響分析
  • 新使用案例- AR/VR 的 SLAM 技術
  • SLAM技術的區域趨勢和影響
  • 新興新興企業的主要相關人員和關鍵技術發展
  • SLAM技術在影像應用上的多種經營模式
  • 未來SLAM研發方向

成長機會宇宙

  • 成長機會一:多感測器融合SLAM系統
  • 成長機會2:自主工業機器人
  • 成長機會3:無人機

附錄

  • 技術成熟度等級 (TRL):解釋

下一步

  • 下一步
  • 為什麼是霜凍,為什麼是現在?
  • 免責聲明
簡介目錄
Product Code: DAB6

Mapping, Surveying, and Location-based Services and Applications are Transforming the Industry

Simultaneous localization and mapping (SLAM) technology in imaging applications is relying on sensor technologies and software algorithms. SLAM allows autonomous systems such as self-driving cars, robots, and drones to simultaneously build a map of their surroundings, navigate, operate effectively, and estimate their position on that map. It leverages inertial measurement units, camera systems, and LiDAR to collect data in the surrounding environments. By analyzing the sensor data, SLAM algorithms create a map of the environment and estimate position and orientation parameters. Algorithms are complex and computationally expensive, but they have advanced significantly in the last few decades.

SLAM is vital technology for a wide range of imaging applications in robots, augmented reality (AR), virtual reality (VR), and autonomous vehicles, and the market is expanding quickly. Urban planners, construction managers, and surveyors can create 3D maps of large-scale landscapes with ease and with desired accuracy through SLAM.

This study includes:

  • An overview of SLAM technology in imaging applications
  • Types of SLAM algorithms for imaging application
  • A comparative analysis of SLAM algorithms for imaging applications
  • The impact and significance of sensor fusion in SLAM-based imaging systems
  • An impact analysis of SLAM technology in medical imaging, satellite, robotics, and AR/VR applications
  • Emerging use cases of SLAM technology across industry verticals
  • Key growth opportunities, business models, and future directions

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on the Simultaneous Localization and Mapping (SLAM) Industry
  • Growth Opportunities Fuel the Growth Pipeline Engine™
  • Research Methodology
  • Growth Environment
  • Technology Attractiveness Dashboard

Growth Opportunity Analysis

  • Scope of Analysis
  • Segmentation of SLAM Algorithms for Imaging Applications
  • Growth Drivers
  • Growth Restraints

Technology Landscape Assessment

  • Overview of SLAM Technology in Imaging Applications
  • Types of SLAM Algorithms for Imaging Applications
  • Advantages and Disadvantages of Various SLAM Algorithms
  • Factors to Consider When Choosing a SLAM Algorithm for an Imaging Application
  • Comparative Analysis of SLAM Algorithms for Imaging Applications
  • Sensor Fusion for SLAM
  • SLAM Performance Metrics-Preparation, Evaluation, and Testing Phases
  • Patent Research Focus Areas
  • Funding Deals and Focus Areas

Impact Analysis of SLAM Technology for Imaging Application Across Industry Verticals

  • Impact Analysis of SLAM Technology for Satellite and Medical Imaging Applications
  • Emerging Use Cases-SLAM Technology for Satellite and Medical Imaging
  • SLAM Technology for Robotics Applications
  • Impact Analysis of SLAM Technology for Robotics Applications
  • Emerging Use Cases-SLAM Technology for Robotics
  • SLAM Technology for AR/VR Applications
  • Impact Analysis of SLAM Technology for AR/VR Applications
  • Emerging Use Cases-SLAM Technology for AR/VR
  • Regional Trends and Impact of SLAM Technology
  • Key Technology Developments of Major Stakeholders and Emerging Start-ups
  • Various Business Models for SLAM Technology in Imaging Applications
  • Future Directions of SLAM R&D

Growth Opportunity Universe

  • Growth Opportunity 1: Multisensor Fusion SLAM Systems
  • Growth Opportunity 2: Autonomous Industrial Robots
  • Growth Opportunity 3: UAVs

Appendix

  • Technology Readiness Levels (TRL): Explanation

Next Steps

  • Your Next Steps
  • Why Frost, Why Now?
  • Legal Disclaimer