市場調查報告書
商品編碼
1617669
製藥的巨量資料 - Strategic IntelligenceStrategic Intelligence: Big Data in Pharma |
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
整個製藥業正在廣泛產生大數據
全球製藥領域從各種來源產生大量數據,包括病患登記、臨床試驗和穿戴式技術。這些資料集如此龐大、複雜且非結構化,傳統的大數據分析方法在處理它們時效率低。
因此,製藥業正在大數據分析技術方面進行創新,這些技術可以保護、儲存、處理、分析、聚合和整合大量複雜的資料集,以產生新的見解。此外,這些技術可以透過機器學習(ML)、人工智慧、物聯網、數位孿生等來實現。
本報告提供了全球製藥業的研究和分析,包括有關醫療、宏觀經濟、技術和監管趨勢將如何影響製藥業大數據的最新見解和預測,我們提供了對關鍵參與者和未來顛覆者的見解。
Big data is generated extensively across pharma
The international pharmaceutical landscape generates vast amounts of data from a variety of sources, such as patient registries, clinical trials, wearable technologies, and more. Such datasets are extremely vast, complex, and unstructured, rendering traditional big data analytical methodologies inefficient for processing.
As a result, organizations within the pharmaceutical industry are innovating big data analytical technologies that can secure, store, process, analyze, aggregate, and integrate vast and complex datasets for the purpose of acquiring novel insights. Furthermore, these technologies can be implemented with machine learning (ML), artificial intelligence (AI), Internet of Things (IoT), digital twins, and more.
This report consolidates GlobalData's latest thinking and forecasts around how the healthcare, macroeconomic, technology, and regulatory trends will impact the big data in pharma space, as well as providing insights into the leading players and future disruptors across the value chain, and providing insights into key drugs and markets from GlobalData's Pharma Intelligence Center. Additionally, this report is designed to provide strategic planners, competitive intelligence professionals and key stakeholders in the pharmaceutical industry a clear view of the opportunities and risks over the foreseeable future for big data.