封面
市場調查報告書
商品編碼
1516110

海上船舶洗滌器系統市場規模- 按燃料(MDO、MGO、混合動力等)、按技術(濕式技術和乾式技術)、按應用(AHTS、PSV、FSV、MPSV 等)和預測,2024 年至2032年

Offshore Marine Scrubber Systems Market Size - By Fuel (MDO, MGO, Hybrid and Others), By Technology (Wet Technology and Dry Technology), By Application (AHTS, PSV, FSV, MPSV and Others) & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 410 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

由於嚴格環境法規的實施,2024-2032年全球海上船舶洗滌器系統市場規模將以9.8%的複合年成長率成長。國際海事組織,特別是國際海事組織(IMO)制定了嚴格的硫含量標準來限制船用燃料的硫含量。此外,永續發展目標 14 等全球計劃旨在到 2025 年預防和大幅減少一切形式的海洋污染,特別關注陸地污染,包括海洋垃圾和營養物污染(全球目標)。這些法規要求船東和承運人依照這些標準實施清潔系統。因此,船東投資船舶清潔系統不僅是為了滿足這些規定,也是為了提高其耐用性。

市場的一個重要趨勢是越來越關注數位化和自動化。船東和營運商正在整合先進的數位技術,以提高洗滌器系統的效率和有效性。自動控制系統可以即時監控和調整洗滌器的運行,確保最佳性能並符合環境要求。這些數位解決方案提供詳細的資料分析,實現預測性維護並減少停機時間。透過數位化和自動化,航運業可以提高營運效率、降低成本、提高環保水平,成為推動市場前進的決定性趨勢。

近海海洋清潔系統產業根據燃料、技術、應用和地區進行分類。

由於其效率和環境效益,乾燥技術領域將在 2032 年之前快速成長。與使用液體溶液去除污染物的濕式洗滌器不同,乾式洗滌器使用乾燥試劑(通常是石灰或碳酸氫鈉)來中和硫氧化物和其他有害排放物。該技術具有多項優點,例如耗水量更低、污泥產量更少以及廢物處理過程更簡單。乾式洗滌器對於水供應和廢棄物管理可能有困難的近海船舶非常有用。其緊湊的設計和易​​於安裝使其成為改造現有船舶和新船舶的首選。

到 2032 年,起錨拖船供應領域將迎來可觀的牽引力,因為對於海上石油和天然氣作業至關重要的 AHTS 船舶需要永續且可靠的排放控制解決方案來高效運作並滿足環境法規。這些船舶經常在環境敏感地區作業,因此必須採用有效的減排技術。船舶洗滌系統可確保符合國際和地區排放標準,幫助 AHTS 船舶最大限度地減少環境足跡。

由於嚴格的環境法規和對永續海事實踐的堅定承諾,到 2032 年,歐洲近海海洋洗滌器系統產業將以合理的速度擴張。該地區較早採用國際海事組織硫法規,使其成為海洋處理系統的領先實施者。挪威、丹麥和德國等國家在清潔海洋技術方面擁有強大的法律框架和大量投資,處於領先地位。歐洲港口和航運當局也在透過激勵和支持計劃促進摩擦系統的使用,這正在推動市場成長。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統分析
    • 供應商矩陣
  • 監管環境
  • 產業影響力
    • 成長動力
    • 產業陷阱與挑戰
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 戰略儀錶板
  • 創新與永續發展前景

第 5 章:市場規模與預測:按燃料分類,2019 - 2032 年

  • 主要趨勢
  • 多域DO
  • 氧化鎂
  • 混合
  • 其他

第 6 章:市場規模與預測:按技術分類,2019 - 2032 年

  • 主要趨勢
  • 濕法技術
  • 乾燥技術

第 7 章:市場規模與預測:按應用分類,2019 - 2032

  • 主要趨勢
  • 高級高溫超導系統
  • PSV
  • FSV
  • MPSV
  • 其他

第 8 章:市場規模與預測:按地區分類,2019 - 2032

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 法國
    • 英國
    • 義大利
    • 希臘
  • 亞太地區
    • 中國
    • 日本
    • 韓國
    • 馬來西亞
    • 印尼
  • 世界其他地區

第 9 章:公司簡介

  • ABB
  • ANDRITZ
  • ALEC Energy
  • Damen Shipyards Group
  • Eaton
  • Fuji Electric Co., Ltd.
  • General Electric
  • Hitachi Energy Ltd.
  • Keppel Offshore & Marine Ltd
  • KwangSung
  • MITSUBISHI HEAVY INDUSTRIES, LTD.
  • Schneider Electric
  • SAACKE GmbH
  • VDL AEC Maritime B.V.
  • Wartsilä
簡介目錄
Product Code: 8879

Global Offshore Marine Scrubber Systems market size will grow at 9.8% CAGR during 2024-2032 due to the implementation of stringent environmental regulations. International maritime organizations, particularly the International Maritime Organization (IMO), have established strict sulfur levels to limit the sulfur content of marine fuels. In addition, global initiatives such as SDG 14 aim to prevent and significantly reduce all forms of marine pollution by 2025, with a special focus on land-based pollution, including marine litter and nutrient pollution ( Global Goals). These regulations oblige ship owners and carriers to implement cleaning systems by these standards. As a result, ship owners are investing in ship cleaning systems not only to meet these regulations but also to improve their durability.

A significant trend in the market is the increasing focus on digitization and automation. Ship owners and operators are integrating advanced digital technologies to improve the efficiency and effectiveness of scrubber systems. Automatic control systems allow real-time monitoring and adjustment of scrubber operation, ensuring optimal performance and compliance with environmental requirements. These digital solutions provide detailed data analysis, enabling predictive maintenance and reducing downtime. With digitization and automation, the maritime industry can achieve greater operational efficiency, lower costs, and improve the level of environmental protection, making it a decisive trend pushing the market forward.

The Offshore Marine Cleaning Systems industry is classified based on fuel, technology, application, and region.

The dry technology segment will grow rapidly through 2032 due to its efficiency and environmental benefits. Unlike wet scrubbers, which use liquid solutions to remove contaminants, dry scrubbers use a dry reagent, usually lime or sodium bicarbonate, to neutralize sulfur oxides and other harmful emissions. This technology offers several advantages, such as lower water consumption, less sludge production, and simpler waste treatment processes. Dry scrubbers are useful for offshore vessels where water availability and waste management can be difficult. Their compact design and easy installation make them the preferred choice for retrofitting both existing and new vessels.

The anchor handling tug supply segment will witness decent traction through 2032 as AHTS vessels, essential for offshore oil and gas operations, require sustainable and reliable emission control solutions to operate efficiently and meet environmental regulations. These ships often operate in environmentally sensitive areas, making it imperative to adopt effective emission-reduction technologies. Ship scrubbing systems help AHTS vessels minimize their environmental footprint by ensuring compliance with international and regional emission standards.

Europe Offshore Marine Scrubber Systems industry will expand at a reasonable rate through 2032 due to strict environmental regulations and a strong commitment to sustainable maritime practices. Early adoption of IMO sulfur regulations in the region positioned it as a leading implementer of marine treatment systems. Countries like Norway, Denmark, and Germany are leaders with strong legal frameworks and significant investments in cleaner marine technology. European ports and shipping authorities are also promoting the use of friction systems with incentives and support programs, which is driving market growth.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market definitions
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Unpaid sources

Chapter 2 Executive Summary

  • 2.1 Industry 360 degree synopsis, 2019 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Vendor Matrix
  • 3.2 Regulatory landscape
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
    • 3.3.2 Industry pitfalls & challenges
  • 3.4 Growth potential analysis
  • 3.5 Porter's Analysis
    • 3.5.1 Bargaining power of suppliers
    • 3.5.2 Bargaining power of buyers
    • 3.5.3 Threat of new entrants
    • 3.5.4 Threat of substitutes
  • 3.6 PESTEL Analysis

Chapter 4 Competitive landscape, 2023

  • 4.1 Strategic dashboard
  • 4.2 Innovation & sustainability landscape

Chapter 5 Market Size and Forecast, By Fuel, 2019 - 2032 (Units & USD Billion)

  • 5.1 Key trends
  • 5.2 MDO
  • 5.3 MGO
  • 5.4 Hybrid
  • 5.5 Others

Chapter 6 Market Size and Forecast, By Technology, 2019 - 2032 (Units & USD Billion)

  • 6.1 Key trends
  • 6.2 Wet technology
  • 6.3 Dry technology

Chapter 7 Market Size and Forecast, By Application, 2019 - 2032 (Units & USD Billion)

  • 7.1 Key trends
  • 7.2 AHTS
  • 7.3 PSV
  • 7.4 FSV
  • 7.5 MPSV
  • 7.6 Others

Chapter 8 Market Size and Forecast, By Region, 2019 - 2032 (Units & USD Billion)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 France
    • 8.3.3 UK
    • 8.3.4 Italy
    • 8.3.5 Greece
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 Japan
    • 8.4.3 South Korea
    • 8.4.4 Malaysia
    • 8.4.5 Indonesia
  • 8.5 Rest of World

Chapter 9 Company Profiles

  • 9.1 ABB
  • 9.2 ANDRITZ
  • 9.3 ALEC Energy
  • 9.4 Damen Shipyards Group
  • 9.5 Eaton
  • 9.6 Fuji Electric Co., Ltd.
  • 9.7 General Electric
  • 9.8 Hitachi Energy Ltd.
  • 9.9 Keppel Offshore & Marine Ltd
  • 9.10 KwangSung
  • 9.11 MITSUBISHI HEAVY INDUSTRIES, LTD.
  • 9.12 Schneider Electric
  • 9.13 SAACKE GmbH
  • 9.14 VDL AEC Maritime B.V.
  • 9.15 Wartsilä