封面
市場調查報告書
商品編碼
1524293

高電子遷移率電晶體市場 - 依材料類型(氮化鎵、碳化矽、砷化鎵)、垂直產業(消費性電子、汽車、工業、A&D)及預測,2024 - 2032 年

High Electron Mobility Transistor Market - By Material Type (Gallium Nitride, Silicon Carbide, Gallium Arsenide), By Industry Vertical (Consumer Electronics, Automotive, Industrial, A&D) & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 230 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

由於對高速電子設備的需求不斷增加,從 2024 年到 232 年,全球高電子遷移率電晶體市場規模將以超過 5% 的複合年成長率成長。

對節能解決方案的日益重視正在成為市場的主要促進因素。根據IEA統計,自能源危機爆發以來,超過70%的能源消費國實施或加強了能源效率政策。隨著世界各地的行業優先考慮永續發展和環境責任,對具有最佳能源效率的電子設備的需求不斷增加。

各種應用對高效能、低功耗的 HEMT 的需求越來越大。這種趨勢在電信、航空航太和汽車等能源效率至關重要的行業中尤其明顯。此外,政府促進節能的法規和激勵措施進一步鼓勵 HEMT 的採用,從而導致全球市場顯著成長。

高電子遷移率電晶體市場根據材料類型、行業和地區進行分類。

到 2032 年,碳化矽 (SiC) 領域將出現可觀的成長,因為基於 SiC 的 HEMT 具有比傳統材料更高的擊穿電壓、更寬的能隙和更好的導熱性等改進的性能特徵。這些固有特性使 SiC HEMT 非常適合電力電子應用,特別是在效率和可靠性至關重要的高溫下。隨著行業優先考慮能源效率和功率密度,對產品的需求在不久的將來可能會進一步成長。

由於汽車產業隨著電動車、自動駕駛技術和先進驅動器的普及而發生的快速變化,汽車產業的高電子遷移率電晶體市場將在 2032 年之前穩定成長。 -輔助系統(ADAS)。 HEMT 透過促進電力推進系統、車輛充電系統和車輛間通訊網路的高效電源模組和射頻放大器的開發,在實現這些進步方面發揮關鍵作用。隨著汽車產業以前所未有的速度採用電氣化和互聯化,需求將持續成長。

到 2032 年,歐洲高電子遷移率電晶體產業將以合理的速度成長,這得益於廣泛的研發活動、政府措施以及產業參與者和學術機構之間的策略合作所支持的強大半導體產業生態系統。此外,汽車行業嚴格的能源效率和減排法規加速了歐洲各地電動和混合動力汽車中 HEMT 的採用。由於有利的市場條件和有利的監管環境,歐洲可望保持在全球HEMT市場的領先地位。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統分析
  • 利潤率分析
  • 技術與創新格局
  • 專利分析
  • 重要新聞和舉措
  • 監管環境
  • 衝擊力
  • 成長動力
    • 對高速通訊系統的需求
    • 無線技術的進步
    • 航太和國防應用
    • 汽車電子的新興應用
    • 物聯網 (IoT) 的成長
  • 產業陷阱與挑戰
    • 技術複雜性
    • 製造複雜且昂貴
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 競爭定位矩陣
  • 戰略展望矩陣

第 5 章:市場估計與預測:依材料類型,2018 年 - 2032 年

  • 主要趨勢
  • 氮化鎵(GaN)
  • 碳化矽(SiC)
  • 砷化鎵 (GaAs)
  • 其他

第 6 章:市場估計與預測:按產業垂直分類,2018 年 - 2032 年

  • 主要趨勢
  • 消費性電子產品
  • 汽車
  • 工業的
  • 航太和國防
  • 其他

第 7 章:市場估計與預測:按地區分類,2018 年 - 2032 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 俄羅斯
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳新銀行
    • 亞太地區其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地區
  • MEA
    • 阿拉伯聯合大公國
    • 沙烏地阿拉伯
    • 南非
    • MEA 的其餘部分

第 8 章:公司簡介

  • NXP Semiconductors
  • ST Microelectronics
  • Texas Instruments
  • Infineon Technologies
  • Renesas Electronics
  • Intel Corporation
  • Sumitomo Electric Device Innovations, Inc.
  • Wolfspeed
  • Toshiba Corporation
  • Analog Devices, Inc.
簡介目錄
Product Code: 8800

Global High Electron Mobility Transistor Market size will grow at a CAGR of more than 5% from 2024 to 232 due to increasing demand for high-speed electronic devices.

Growing emphasis on energy-efficient solutions is becoming a major driving factor in the market. According to the IEA, since the beginning of the energy crisis, more than 70% of energy-consuming countries have implemented or strengthened efficiency policies. As industries around the world prioritize sustainability and environmental responsibility, the demand for electronic devices that offer the best in energy efficiency is increasing.

HEMTs with high performance and low power consumption are increasingly in demand in various applications. This trend is particularly evident in industries such as telecommunications, aerospace, and automotive, where energy efficiency is paramount. Additionally, government regulations and incentives to promote energy conservation are further encouraging the adoption of HEMTs, leading to significant growth in the global market.

High electron mobility transistor Market is classified based on material type, industry, and region.

The Silicon Carbide (SiC) segment will grow commendably through 2032 as SiC-based HEMTs offer improved performance characteristics such as higher breakdown voltage, wider band gap, and better thermal conductivity than conventional materials. These inherent properties make SiC HEMTs well-suited for power electronics applications, especially at high temperatures where efficiency and reliability are of utmost importance. With the industry prioritizing energy efficiency and power density, the demand for products could record further growth in the near future.

The High Electron Mobility Transistor Market from the automotive sector segment will grow steadily through 2032 due to rapid changes in the automotive industry with the proliferation of electric vehicles, autonomous driving technologies, and advanced drivers. -assistance systems (ADAS). HEMTs play a critical role in enabling these advances by facilitating the development of high-efficiency power modules and RF amplifiers for electric propulsion systems, vehicle charging systems, and vehicle-to-vehicle communication networks. As the automotive industry adopts electrification and connectivity at an unprecedented rate, demand will continue to grow.

Europe high electron mobility transistor industry will grow at a reasonable pace through 2032, driven by a strong semiconductor industry ecosystem supported by extensive R&D activities, government initiatives, and strategic collaboration between industry players and academic institutions. In addition, strict energy efficiency and emission reduction regulations in the automotive industry have accelerated the adoption of HEMTs in electric and hybrid vehicles across Europe. Thanks to favorable market conditions and a favorable regulatory environment, Europe is expected to maintain its leading position in the global HEMT market.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definitions
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculations
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2018 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Profit margin analysis
  • 3.3 Technology & innovation landscape
  • 3.4 Patent analysis
  • 3.5 Key news & initiatives
  • 3.6 Regulatory landscape
  • 3.7 Impact forces
  • 3.8 Growth drivers
    • 3.8.1 Demand for high-speed communication systems
    • 3.8.2 Advancements in wireless technologies
    • 3.8.3 Aerospace and defense applications
    • 3.8.4 Emerging applications in automotive electronics
    • 3.8.5 Growth of internet of things (IoT)
  • 3.9 Industry pitfalls & challenges
    • 3.9.1 Technological complexity
    • 3.9.2 Complex and expensive manufacturing
  • 3.10 Growth potential analysis
  • 3.11 Porter's analysis
    • 3.11.1 Supplier power
    • 3.11.2 Buyer power
    • 3.11.3 Threat of new entrants
    • 3.11.4 Threat of substitutes
    • 3.11.5 Industry rivalry
  • 3.12 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Material Type, 2018 - 2032 (USD Billion)

  • 5.1 Key trends
  • 5.2 Gallium nitride (GaN)
  • 5.3 Silicon carbide (SiC)
  • 5.4 Gallium arsenide (GaAs)
  • 5.5 Others

Chapter 6 Market Estimates & Forecast, By Industry Vertical, 2018 - 2032 (USD Billion)

  • 6.1 Key trends
  • 6.2 Consumer electronics
  • 6.3 Automotive
  • 6.4 Industrial
  • 6.5 Aerospace and defense
  • 6.6 Others

Chapter 7 Market Estimates & Forecast, By Region, 2018 - 2032 (USD Billion)

  • 7.1 Key trends
  • 7.2 North America
    • 7.2.1 U.S.
    • 7.2.2 Canada
  • 7.3 Europe
    • 7.3.1 UK
    • 7.3.2 Germany
    • 7.3.3 France
    • 7.3.4 Italy
    • 7.3.5 Spain
    • 7.3.6 Russia
    • 7.3.7 Rest of Europe
  • 7.4 Asia Pacific
    • 7.4.1 China
    • 7.4.2 India
    • 7.4.3 Japan
    • 7.4.4 South Korea
    • 7.4.5 ANZ
    • 7.4.6 Rest of Asia Pacific
  • 7.5 Latin America
    • 7.5.1 Brazil
    • 7.5.2 Mexico
    • 7.5.3 Rest of Latin America
  • 7.6 MEA
    • 7.6.1 UAE
    • 7.6.2 Saudi Arabia
    • 7.6.3 South Africa
    • 7.6.4 Rest of MEA

Chapter 8 Company Profiles

  • 8.1 NXP Semiconductors
  • 8.2 ST Microelectronics
  • 8.3 Texas Instruments
  • 8.4 Infineon Technologies
  • 8.5 Renesas Electronics
  • 8.6 Intel Corporation
  • 8.7 Sumitomo Electric Device Innovations, Inc.
  • 8.8 Wolfspeed
  • 8.9 Toshiba Corporation
  • 8.10 Analog Devices, Inc.