封面
市場調查報告書
商品編碼
1528963

沼氣氫氣生產市場規模 - 依生產製程(蒸汽甲烷重整、自熱重整、部分氧化重整)、按應用(發電、化學品、海洋、運輸)和預測,2024 - 2032 年

Biogas to Hydrogen Market Size - By Production Process (Steam Methane Reforming, Autothermal Reforming, Partial Oxidation Reforming), By Application (Power Generation, Chemicals, Marine, Transport) & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 115 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

在領先公司之間的策略合作夥伴關係的推動下,全球沼氣氫氣生產市場將在 2024 年至 2032 年間實現 28% 的複合年成長率。這些合作利用再生能源和氣體轉換技術的專業知識,促進沼氣來源的永續氫氣生產。透過結合資源和創新,該公司的目標是擴大生產能力並提高將沼氣轉化為氫氣的效率,氫氣是一種對交通和工業等各個部門脫碳至關重要的清潔燃料。

例如,2024 年 4 月,印度沼氣協會 (IBA) 與印度氫能協會 (HAI) 合作推動生物基能源解決方案,特別關注綠氫和藍氫。 IBA 主席 Gaurav Kedia 在接受 PTI 採訪時表示,兩個組織已簽署了一份合作備忘錄 (MoU),旨在促進印度境內的可再生能源生產。

這些合作夥伴關係也促進了新技術和製程的研究,降低了成本並增強了沼氣氫氣生產解決方案的可行性。隨著全球減少碳排放的承諾不斷加強,在致力於為永續未來開拓綠色能源解決方案的強大產業聯盟的支持下,沼氣氫氣生產市場有望大幅擴張。

沼氣製氫產業的總體規模根據生產流程、應用和地區進行分類。

到 2032 年,自熱重整領域將呈現出可觀的成長率。自熱重整將蒸汽重整與部分氧化結合在一個反應器中,最佳化氫氣生產,同時最大限度地減少能源消耗和碳排放。隨著產業和政府優先考慮清潔能源解決方案,自熱重整提供了一種可擴展的方法來為各種應用(包括燃料電池和工業流程)生產氫氣。該市場的成長是由其支持向綠色能源轉型和減少對化石燃料依賴的潛力所推動的。

隨著工業和公用事業尋求清潔能源解決方案,發電領域可能會在 2024 年至 2032 年期間主導沼氣氫氣生產市場的應用前景。來自有機廢棄物的沼氣經由蒸氣重整或電解等過程轉化為氫氣。氫氣是一種清潔燃料,可用於燃料電池發電,除水蒸氣外,排放為零。這種能力使沼氣氫氣生產成為分散式發電的一個有吸引力的選擇,提供可靠的電力,同時減少對環境的影響。隨著全球能源需求朝著永續發展的方向發展,用於發電的沼氣氫氣生產市場即將成長,推動再生能源技術的創新。

在歐洲,由於雄心勃勃的氣候目標和向再生能源的轉變,對沼氣氫氣生產解決方案的需求不斷成長。源自有機廢棄物的沼氣因其透過蒸汽重整和電解等先進轉化技術生產氫氣的潛力而日益受到重視。這種氫氣對於整個歐洲的工業、運輸和供熱產業脫碳至關重要。透過支持性政策、基礎設施投資和合作研究舉措,歐洲國家正在加速採用沼氣製氫,旨在實現碳中和並增強能源安全,同時培養非洲大陸永續的能源未來。

目錄

第1章:研究方法

  • 研究設計
  • 基本估計和計算
  • 預測模型
  • 初步研究與驗證
    • 主要來源
    • 資料探勘來源

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統
  • 監管環境
  • 產業影響力
    • 成長動力
    • 產業陷阱與挑戰
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 介紹
  • 戰略展望
  • 創新與永續發展前景

第 5 章:市場規模與預測:按生產流程分類,2021 - 2032 年

  • 主要趨勢
  • 蒸氣甲烷重整
  • 自熱重整
  • 部分氧化重整
  • 其他

第 6 章:市場規模與預測:按應用分類,2021 - 2032

  • 主要趨勢
  • 發電
  • 化學品
  • 海洋
  • 運輸
  • 其他

第 7 章:市場規模與預測:按地區分類,2021 - 2032 年

  • 主要趨勢
  • 北美洲
  • 歐洲
  • 亞太地區

第 8 章:公司簡介

  • Air Products and Chemicals, Inc.
  • Alps Ecoscience
  • Fortescue
  • FuelCell Energy
  • Hazer Group Limited
  • H2B2
  • H2 Energy Group
  • Hyundai Motor Company
  • Kiwa
  • Kore
  • Linde Plc
  • Maire Tecnimont S.p.A.
  • RGH2
  • SYPOX GmbH
  • Technip Energies N.V.
簡介目錄
Product Code: 9413

Global Biogas to Hydrogen Market will witness a 28% CAGR between 2024 and 2032 fueled by strategic partnerships between leading companies. These collaborations leverage expertise in renewable energy and gas conversion technologies to advance sustainable hydrogen production from biogas sources. By combining resources and innovation, companies aim to scale production capabilities and improve efficiency in converting biogas into hydrogen, a clean fuel crucial for decarbonizing various sectors like transportation and industry.

For instance, in April 2024, the Indian Biogas Association (IBA) collaborated with the Hydrogen Association of India (HAI) to advance bio-based energy solutions, particularly focusing on green and blue hydrogen. In an interview with PTI, Gaurav Kedia, Chairman of IBA, stated that the two organizations have signed a memorandum of understanding (MoU) aimed at fostering the production of renewable energy within India.

These partnerships also facilitate research into new technologies and processes, driving down costs and enhancing the viability of biogas-to-hydrogen solutions. As global commitments to reduce carbon emissions intensify, the market for biogas to hydrogen is poised for significant expansion, supported by robust industry alliances focused on pioneering greener energy solutions for a sustainable future.

The overall Biogas to Hydrogen Industry size is classified based on the production process, application, and region.

The autothermal reforming segment will exhibit a decent growth rate through 2032. Autothermal reforming process converts biogas, derived from organic materials, into hydrogen efficiently and sustainably. Autothermal reforming combines steam reforming with partial oxidation in a single reactor, optimizing hydrogen production while minimizing energy consumption and carbon emissions. As industries and governments prioritize clean energy solutions, autothermal reforming offers a scalable method to produce hydrogen for various applications, including fuel cells and industrial processes. The market's growth is driven by its potential to support a transition towards greener energy sources and reduce dependence on fossil fuels.

The power generation segment could dominate the application landscape of the Biogas to Hydrogen market over 2024-2032 as industries and utilities seek cleaner energy solutions. Biogas, derived from organic waste, is converted into hydrogen through processes like steam reforming or electrolysis. Hydrogen, a clean fuel, can then be used in fuel cells to generate electricity with zero emissions other than water vapor. This capability makes biogas-to-hydrogen an attractive option for decentralized power generation, providing reliable electricity while reducing environmental impact. As global energy demands evolve towards sustainability, the market for biogas to hydrogen for power generation is poised for growth, driving innovation in renewable energy technologies.

In Europe, there is a growing demand for biogas to hydrogen solutions driven by ambitious climate targets and a shift towards renewable energy. Biogas, sourced from organic waste, is increasingly valued for its potential to produce hydrogen through advanced conversion technologies like steam reforming and electrolysis. This hydrogen is pivotal in decarbonizing industries, transportation, and heating sectors across Europe. With supportive policies, investments in infrastructure, and collaborative research initiatives, European countries are accelerating the adoption of biogas to hydrogen, aiming to achieve carbon neutrality and enhance energy security while fostering a sustainable energy future for the continent.

Table of Contents

Chapter 1 Research Methodology

  • 1.1 Research design
  • 1.2 Base estimates & calculations
  • 1.3 Forecast model
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources

Chapter 2 Executive summary

  • 2.1 Industry 360° synopsis, 2019 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem
  • 3.2 Regulatory landscape
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
    • 3.3.2 Industry pitfalls & challenges
  • 3.4 Growth potential analysis
  • 3.5 Porter's analysis
    • 3.5.1 Bargaining power of suppliers
    • 3.5.2 Bargaining power of buyers
    • 3.5.3 Threat of new entrants
    • 3.5.4 Threat of substitutes
  • 3.6 PESTEL analysis

Chapter 4 Competitive landscape, 2023

  • 4.1 Introduction
  • 4.2 Strategic outlook
  • 4.3 Innovation & sustainability landscape

Chapter 5 Market Size and Forecast, By Production Process, 2021 - 2032 (MT & USD Million)

  • 5.1 Key trends
  • 5.2 Steam methane reforming
  • 5.3 Autothermal reforming
  • 5.4 Partial oxidation reforming
  • 5.5 Others

Chapter 6 Market Size and Forecast, By Application, 2021 - 2032 (MT & USD Million)

  • 6.1 Key trends
  • 6.2 Power generation
  • 6.3 Chemicals
  • 6.4 Marine
  • 6.5 Transport
  • 6.6 Others

Chapter 7 Market Size and Forecast, By Region, 2021 - 2032 (MT & USD Million)

  • 7.1 Key trends
  • 7.2 North America
  • 7.3 Europe
  • 7.4 Asia Pacific

Chapter 8 Company Profiles

  • 8.1 Air Products and Chemicals, Inc.
  • 8.2 Alps Ecoscience
  • 8.3 Fortescue
  • 8.4 FuelCell Energy
  • 8.5 Hazer Group Limited
  • 8.6 H2B2
  • 8.7 H2 Energy Group
  • 8.8 Hyundai Motor Company
  • 8.9 Kiwa
  • 8.10 Kore
  • 8.11 Linde Plc
  • 8.12 Maire Tecnimont S.p.A.
  • 8.13 RGH2
  • 8.14 SYPOX GmbH
  • 8.15 Technip Energies N.V.