封面
市場調查報告書
商品編碼
1529035

自主海洋車輛市場規模 - 按產品類型、子系統、類型、應用和預測,2024 年至 2032 年

Autonomous Marine Vehicle Market Size - By Product Type, By Sub-system, By Type, By Application & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 250 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

在產業領導者不斷創新和推出的推動下,2024 年至 2032 年間,全球自主海洋車輛市場複合年成長率將達到 5.6%。這些車輛配備了先進的人工智慧和導航系統,正在徹底改變航運、國防、海上能源和科學研究等領域的海上運作。該公司正在開發能夠執行傳統上由有人駕駛船舶完成的任務的自主船舶,包括監視、海洋學研究和貨物運輸。

例如,2023 年 11 月,透過自動駕駛車輛收集海洋資料的先驅 Saildrone 首次獲得了美國船級社對自動無人水面車輛的分類。 Saildrone Voyager 是一款用於近岸測深和海上安全的 10 公尺 USV,它展示了其作為增強全球海洋近即時資料收集的平台的可靠性。

領先公司正在投資尖端技術,以提高船舶自主性、安全性和營運效率。這包括整合感測器陣列、通訊系統和預測分析,以自主導航不可預測的海洋環境。隨著海運業尋求降低營運成本、提高永續性和提高海上安全性,對自主海洋車輛的需求預計將成長,從而推動這個充滿活力的行業的進一步創新和市場擴張。

整個自主海洋車輛產業根據產品類型、子系統、類型、應用和區域進行分類。

由於水面車輛的多功能性和在各個海事領域的應用,自主海洋車輛市場對水面車輛的需求不斷增加。配備先進導航系統和感測器的水面自主車輛用於海洋學研究、環境監測、監視和海上作業。它們透過消除對船上船員的需求,同時提高海上營運效率和安全性,提供經濟高效的解決方案。隨著各行業優先考慮效率和永續性,水面自動駕駛車輛正在成為資料收集、海事安全和探索偏遠海洋環境的重要工具。隨著公司不斷創新以滿足多樣化的行業需求和監管要求,這一趨勢正在推動市場成長。

由於需要提高海上作業的營運效率和安全性,自動船用車輛(AMV)市場正在經歷石油和天然氣產業的需求增加。 AMV配備了先進的導航和感測技術,用於管道檢查、海上平台監測和環境調查。它們透過減少營運停機時間並降低與惡劣海洋環境中的載人任務相關的風險來提供經濟高效的解決方案。隨著石油和天然氣公司優先考慮成本效率和環境永續性,AMV 的採用持續成長。這些自主船舶有助於最佳化海上作業,同時遵守嚴格的安全和監管標準。

在歐洲,由於海洋研究、環境監測和海事安全投資的增加,對自主海洋車輛(AMV)的需求不斷增加。具有自主導航系統和遙感功能等先進技術的 AMV 對於進行高效和永續的海洋學調查和檢查至關重要。注重永續發展和海洋保護的歐洲國家正在利用AMV來增強其在近海能源探勘、漁業管理和氣候研究方面的能力。隨著法規支援技術進步和產業尋求最大限度地減少對環境的影響,歐洲對 AMV 的需求持續擴大,促進了整個海事部門的創新和合作。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統分析
  • 供應商格局
    • 零件供應商
    • 整車製造商
    • 軟體開發商
    • 系統整合商
    • 售後服務商
  • 利潤率分析
  • 技術與創新格局
  • 專利分析
  • 重要新聞和舉措
  • 監管環境
  • 衝擊力
    • 成長動力
      • 對海洋學和環境資料的需求不斷成長
      • 專注海上安全與保障
      • 在依賴水下基礎設施檢查和維護的石油和天然氣產業中的應用
      • 感測器、人工智慧和自主導航技術的進步
      • AMV 的效率和成本節約
    • 產業陷阱與挑戰
      • 開發和部署 AMV 的初始投資較高
      • 有限的操作範圍和自主權
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 競爭定位矩陣
  • 戰略展望矩陣

第 5 章:市場估計與預測:依產品類型,2021 - 2032 年

  • 主要趨勢
  • 地面車輛
  • 水下航行器

第 6 章:市場估計與預測:按類型,2021 - 2032

  • 主要趨勢
  • 半自主
  • 自主

第 7 章:市場估計與預測:按子系統,2021 - 2032

  • 主要趨勢
  • 推進力
  • 驅動系統
  • 避免碰撞
  • 有效載荷和成像
  • 通訊與導航

第 8 章:市場估計與預測:依應用分類,2021 - 2032

  • 主要趨勢
  • 軍事與國防
  • 石油和天然氣
  • 環境監測
  • 海洋學
  • 考古與探索
  • 搜尋及打撈行動

第 9 章:市場估計與預測:按地區,2021 - 2032

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 西班牙
    • 義大利
    • 俄羅斯
    • 北歐人
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳新銀行
    • 東南亞
    • 亞太地區其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地區
  • MEA
    • 阿拉伯聯合大公國
    • 南非
    • 沙烏地阿拉伯
    • MEA 的其餘部分

第 10 章:公司簡介

  • Kongsberg Maritime
  • Teledyne Marine
  • L3Harris Technologies
  • Ocean Infinity
  • General Dynamics Mission Systems
  • Saab Seaeye
  • Atlas Elektronik
  • Liquid Robotics (a Boeing Company)
  • ECA Group
  • Bluefin Robotics (a General Dynamics company)
  • Oceanscan
  • Subsea 7
  • Saipem
  • Sonardyne International Ltd
  • Hydroid (a subsidiary of Huntington Ingalls Industries)
  • iXblue
  • ASV Global (now part of L3Harris Technologies)
  • Eelume AS
  • Seabotix (a Teledyne Marine company)
  • SeaRobotics Corporation
簡介目錄
Product Code: 9485

Global Autonomous Marine Vehicle Market will witness a 5.6% CAGR between 2024 and 2032, driven by continuous innovations and launches from industry leaders. These vehicles, equipped with advanced artificial intelligence and navigation systems, are revolutionizing maritime operations in sectors such as shipping, defense, offshore energy, and scientific research. Companies are developing autonomous vessels capable of performing tasks traditionally done by manned ships, including surveillance, oceanographic research, and cargo transportation.

For instance, in November 2023, Saildrone, a pioneer in ocean data collection through autonomous vehicles, for the first time, a classification for an autonomous, uncrewed surface vehicle from the American Bureau of Shipping. The Saildrone Voyager, a 10-meter USV utilized for near-shore bathymetry and maritime security, demonstrated its reliability as a platform that enhances data collection in near-real-time across global oceans.

Leading firms are investing in cutting-edge technologies to enhance vessel autonomy, safety, and operational efficiency. This includes integrating sensor arrays, communication systems, and predictive analytics to navigate unpredictable maritime environments autonomously. As maritime industries seek to reduce operating costs, increase sustainability, and improve safety at sea, the demand for autonomous marine vehicles is expected to grow, driving further innovation and market expansion in this dynamic sector.

The overall Autonomous Marine Vehicle Industry is classified based on the product type, sub-system, type, application, and region.

The autonomous marine vehicle market is seeing increased demand for surface vehicles due to their versatility and applications in various maritime sectors. Surface autonomous vehicles, equipped with advanced navigation systems and sensors, are used for oceanographic research, environmental monitoring, surveillance, and offshore operations. They offer cost-effective solutions by eliminating the need for onboard crews while improving operational efficiency and safety at sea. As industries prioritize efficiency and sustainability, surface autonomous vehicles are becoming essential tools for data collection, maritime security, and exploring remote marine environments. This trend is driving market growth as companies innovate to meet diverse industry needs and regulatory requirements.

The Autonomous Marine Vehicle (AMV) market is experiencing heightened demand from the oil and gas industry, driven by the need to enhance operational efficiency and safety in offshore operations. AMVs, equipped with advanced navigation and sensing technologies, are deployed for pipeline inspection, offshore platform monitoring, and environmental surveys. They offer cost-effective solutions by reducing operational downtime and mitigating risks associated with manned missions in harsh marine environments. As oil and gas companies prioritize cost efficiency and environmental sustainability, the adoption of AMVs continues to grow. These autonomous vessels help optimize offshore operations while adhering to stringent safety and regulatory standards.

In Europe, there is a rising demand for Autonomous Marine Vehicles (AMVs) driven by increasing investments in marine research, environmental monitoring, and maritime security. AMVs with advanced technology, such as autonomous navigation systems and remote sensing capabilities, are crucial for conducting efficient and sustainable oceanographic surveys and inspections. European countries focusing on sustainable development and marine conservation are leveraging AMVs to enhance their capabilities in offshore energy exploration, fisheries management, and climate research. As regulations support technological advancements and industries seek to minimize environmental impact, the demand for AMVs in Europe continues to expand, fostering innovation and collaboration across the maritime sector.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research design
    • 1.1.1 Research approach
    • 1.1.2 Data collection methods
  • 1.2 Base estimates and calculations
    • 1.2.1 Base year calculation
    • 1.2.2 Key trends for market estimates
  • 1.3 Forecast model
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market definitions

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Component suppliers
    • 3.2.2 Vehicle manufacturers
    • 3.2.3 Software developers
    • 3.2.4 System integrators
    • 3.2.5 After-sales service providers
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Growing demand for oceanographic and environmental data
      • 3.8.1.2 Focus on maritime safety and security
      • 3.8.1.3 Applications in the oil and gas industry that relies on underwater infrastructure inspection and maintenance
      • 3.8.1.4 Advancements in sensor, AI, and autonomous navigation technology
      • 3.8.1.5 Efficiency and cost savings of AMV's
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 High initial investment in developing and deploying AMVs
      • 3.8.2.2 Limited operational range and autonomy
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Product Type, 2021 - 2032 ($Bn, Units)

  • 5.1 Key trends
  • 5.2 Surface vehicles
  • 5.3 Underwater vehicles

Chapter 6 Market Estimates & Forecast, By Type, 2021 - 2032 ($Bn, Units)

  • 6.1 Key trends
  • 6.2 Semi-Autonomous
  • 6.3 Autonomous

Chapter 7 Market Estimates & Forecast, By Sub-System, 2021 - 2032 ($Bn, Units)

  • 7.1 Key trends
  • 7.2 Propulsion
  • 7.3 Drive system
  • 7.4 Collision avoidance
  • 7.5 Payloads & imaging
  • 7.6 Communication & navigation

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2032 ($Bn, Units)

  • 8.1 Key trends
  • 8.2 Military & defense
  • 8.3 Oil & gas
  • 8.4 Environment monitoring
  • 8.5 Oceanography
  • 8.6 Archaeology & exploration
  • 8.7 Search & salvage operation

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2032 ($Bn, Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Russia
    • 9.3.7 Nordics
    • 9.3.8 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Southeast Asia
    • 9.4.7 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
    • 9.5.4 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles

  • 10.1 Kongsberg Maritime
  • 10.2 Teledyne Marine
  • 10.3 L3Harris Technologies
  • 10.4 Ocean Infinity
  • 10.5 General Dynamics Mission Systems
  • 10.6 Saab Seaeye
  • 10.7 Atlas Elektronik
  • 10.8 Liquid Robotics (a Boeing Company)
  • 10.9 ECA Group
  • 10.10 Bluefin Robotics (a General Dynamics company)
  • 10.11 Oceanscan
  • 10.12 Subsea 7
  • 10.13 Saipem
  • 10.14 Sonardyne International Ltd
  • 10.15 Hydroid (a subsidiary of Huntington Ingalls Industries)
  • 10.16 iXblue
  • 10.17 ASV Global (now part of L3Harris Technologies)
  • 10.18 Eelume AS
  • 10.19 Seabotix (a Teledyne Marine company)
  • 10.20 SeaRobotics Corporation