封面
市場調查報告書
商品編碼
1532467

航太航太機器人市場,按應用(鑽孔、焊接、噴漆、檢查)、按類型(鉸接式、笛卡爾)、按技術(傳統、協作)、按解決方案(硬體、軟體、服務)和預測,2024 - 2032 年

Aerospace Robotics Market, By Application (Drilling, Welding, Painting, Inspection), By Type (Articulated, Cartesian), By Technology (Traditional, Collaborative), By Solution (Hardware, Software, Services) & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 200 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

由於對安全性和飛機零件複雜性的關注,2024 年至 2032 年間,全球航太航太機器人市場規模將以 13% 的複合年成長率擴大。隨著航空航太製造商優先考慮工人的安全,機器人擴大被用來處理危險任務,減少人類暴露在危險環境中的機會。此外,現代飛機零件的複雜性和精確性要求先進的機器人系統能夠進行高精度和複雜的操作。對安全性和精度不斷成長的需求推動了機器人技術的採用,從而擴大了航空航太機器人產業。

例如,2024 年 5 月,斗山機器人在芝加哥 Automate 2024 展會上推出了新型 P-SERIES PRIME-SERIES 協作機器人 P3020。此型號的有效負載為 30 公斤,工作範圍為 80 英寸,增強了自動化能力。這項發展凸顯了航空航太領域更強大、更通用的機器人解決方案的趨勢,有可能推動自動化技術的進一步採用和創新,以滿足產業不斷變化的需求。

航空航太機器人市場根據應用、類型、技術、解決方案和區域進行細分。

由於噴漆領域在提高飛機美觀性和耐用性方面發揮關鍵作用,到 2032 年,噴漆領域將取得顯著成長。自動噴漆系統提供精確、高效和一致性,這對於滿足嚴格的航空標準至關重要。隨著航空航太製造商越來越重視高品質的表面處理和降低勞動力成本,簡化噴漆流程的機器人解決方案越來越受到關注。該細分市場的成長是由機器人技術的進步所推動的,該技術實現了複雜、高速的塗裝應用,從而在航空航太機器人行業中佔據了很大的佔有率。

由於其多功能性和處理複雜任務的先進能力,到 2032 年,鉸接式部分將大幅成長。關節式機器人具有多個自由度,非常適合在飛機的有限空間內執行複雜的操作,例如組裝、檢查和維護。它們的靈活性和精確度提高了操作效率,使其成為現代航空航太應用的必需品。隨著產業不斷擁抱自動化,對關節式機器人的需求將顯著成長。

由於其強大的航空航太製造基礎和先進的技術基礎設施,歐洲航空航太機器人市場佔有率從2024年到2032年將經歷顯著的複合年成長率。該地區對飛機生產創新和高標準的重視推動了機器人技術的採用,以提高效率和精確度。法國、德國和英國等國家的主要航空航太中心正在大力投資機器人技術,以保持競爭優勢。這種不斷成長的投資和技術進步使歐洲成為航空航太機器人行業的重要貢獻者。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統分析
  • 供應商矩陣
  • 利潤率分析
  • 技術與創新格局
  • 專利分析
  • 重要新聞和舉措
  • 監管環境
  • 衝擊力
    • 成長動力
      • 飛機製造流程對自動化的需求不斷增加
      • 強調降低成本和提高效率。
      • 用於複雜航空航太任務的機器人技術的進步
      • 日益關注生產中的精度和品質控制
      • 解決航空航太營運的勞動力短缺和安全問題
    • 產業陷阱與挑戰
      • 對自動化系統中網路安全風險的擔憂
      • 確保機器人技術合規性的挑戰
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 競爭定位矩陣
  • 戰略展望矩陣

第 5 章:市場估計與預測:依應用分類,2021 - 2032

  • 主要趨勢
  • 鑽孔
  • 焊接
  • 繪畫
  • 檢查
  • 其他

第 6 章:市場估計與預測:按類型,2021 - 2032

  • 主要趨勢
  • 鉸接式
  • 笛卡兒
  • 其他

第 7 章:市場估計與預測:依技術分類,2021 - 2032 年

  • 主要趨勢
  • 傳統的
  • 協作性

第 8 章:市場估計與預測:按解決方案,2021 - 2032 年

  • 主要趨勢
  • 硬體
  • 軟體
  • 服務

第 9 章:市場估計與預測:按地區,2021 - 2032

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳新銀行
    • 亞太地區其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地區
  • MEA
    • 阿拉伯聯合大公國
    • 南非
    • 沙烏地阿拉伯
    • MEA 的其餘部分

第 10 章:公司簡介

  • ABB
  • AV&R
  • Electroimpact Inc.
  • Fanuc Corporation
  • JH Robotics, Inc.
  • KUKA AG
  • Mitsubishi Electric Corporation
  • OC Robotics
  • Universal Robots A/S
  • Yaskawa Electric Corporation
簡介目錄
Product Code: 9518

Global Aerospace Robotics Market size will expand at a 13% CAGR between 2024 and 2032, attributed to the focus on safety and the complexity of aircraft components. As aerospace manufacturers prioritize worker safety, robots are increasingly employed to handle hazardous tasks, reducing human exposure to dangerous environments. Furthermore, the intricate and precise nature of modern aircraft components necessitates advanced robotic systems capable of high precision and complex operations. This growing demand for both safety and precision fuels the adoption of robotics, thereby expanding the aerospace robotics industry.

For instance, in May 2024, Doosan Robotics introduced its new P-SERIES PRIME-SERIES collaborative robot, the P3020, at Automate 2024 in Chicago. This model features a 30 kg payload and an 80-inch reach, enhancing automation capabilities. This development highlights a trend towards more powerful and versatile robotic solutions in the aerospace sector, potentially driving further adoption and innovation in automation technologies to meet the industry's evolving needs.

The aerospace robotics market is fragmented based on application, type, technology, solution, and region.

The painting segment will garner remarkable gains through 2032, spurred by its critical role in enhancing aircraft aesthetics and durability. Automated painting systems offer precision, efficiency, and consistency, essential for meeting stringent aerospace standards. As aerospace manufacturers increasingly prioritize high-quality finishes and reduced labor costs, robotics solutions that streamline the painting process are gaining traction. This segment's growth is driven by advancements in robotic technology that enable complex, high-speed painting applications, thus capturing an ample share of the aerospace robotics industry.

The articulated segment will see a considerable surge by 2032, owing to its versatility and advanced capabilities in handling complex tasks. Articulated robots, with their multiple degrees of freedom, are ideal for performing intricate operations such as assembly, inspection, and maintenance within the confined spaces of aircraft. Their flexibility and precision enhance operational efficiency, making them essential for modern aerospace applications. As the industry continues to embrace automation, the demand for articulated robots will grow significantly.

Europe aerospace robotics market share will experience a notable CAGR from 2024 to 2032 due to its strong aerospace manufacturing base and advanced technological infrastructure. The region's emphasis on innovation and high standards in aircraft production drives the adoption of robotics to enhance efficiency and precision. Major aerospace hubs in countries like France, Germany, and the UK are investing heavily in robotic technologies to maintain competitive edges. This growing investment and technological advancement make Europe a crucial contributor to the aerospace robotics industry.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Aerospace robotics industry 360º synopsis, 2021 - 2032
  • 2.2 Business trends
    • 2.2.1 Total addressable market (TAM), 2024-2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Vendor matrix
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news and initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Increasing demand for automation in aircraft manufacturing processes
      • 3.8.1.2 Emphasis on cost reduction and efficiency improvements.
      • 3.8.1.3 Advancements in robotic technology for complex aerospace tasks
      • 3.8.1.4 Rising focus on precision and quality control in production
      • 3.8.1.5 Addressing labor shortages and safety concerns in aerospace operations
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 Concerns over cybersecurity risks in automated systems
      • 3.8.2.2 Challenges in ensuring regulatory compliance for robotic technologies
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
    • 3.10.1 Supplier power
    • 3.10.2 Buyer power
    • 3.10.3 Threat of new entrants
    • 3.10.4 Threat of substitutes
    • 3.10.5 Industry rivalry
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Application, 2021 - 2032 (USD Million)

  • 5.1 Key trends
  • 5.2 Drilling
  • 5.3 Welding
  • 5.4 Painting
  • 5.5 Inspection
  • 5.6 Others

Chapter 6 Market Estimates & Forecast, By Type, 2021 - 2032 (USD Million)

  • 6.1 Key trends
  • 6.2 Articulated
  • 6.3 Cartesian
  • 6.4 Others

Chapter 7 Market Estimates & Forecast, By Technology, 2021 - 2032 (USD Million)

  • 7.1 Key trends
  • 7.2 Traditional
  • 7.3 Collaborative

Chapter 8 Market Estimates & Forecast, By Solution, 2021 - 2032 (USD Million)

  • 8.1 Key trends
  • 8.2 Hardware
  • 8.3 Software
  • 8.4 Services

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2032 (USD Million)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles

  • 10.1 ABB
  • 10.2 AV&R
  • 10.3 Electroimpact Inc.
  • 10.4 Fanuc Corporation
  • 10.5 JH Robotics, Inc.
  • 10.6 KUKA AG
  • 10.7 Mitsubishi Electric Corporation
  • 10.8 OC Robotics
  • 10.9 Universal Robots A/S
  • 10.10 Yaskawa Electric Corporation