封面
市場調查報告書
商品編碼
1535730

衝擊感測器市場- 按類型(壓電式、壓阻式、電容器、應變計等)、按輸出類型(模擬、數位)、按材料(電氣石、石英、鹽、磷酸鎵)、按應用、按最終用途與預測, 2024 - 2032

Shock Sensor Market - By Type (Piezoelectric, Piezoresistive, Capacitors, Strain Gage, Others), By Output Type (Analog, Digital), By Material (Tourmaline, Quartz, Salts, Gallium Phosphate), By Application, By End Use & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

受汽車安全需求增加以及航空航太和國防應用精確監控需求的推動,2024 年至 2032 年間,全球震動感測器市場規模將實現 20% 的複合年成長率。在汽車領域,先進的衝擊感測器透過檢測和響應振動和衝擊來增強安全功能。此外,航空航太和國防工業需要高精度感測器來監控結構完整性並確保運作可靠性。這些領域對安全性和精度的日益重視凸顯了對先進衝擊感測器的需求不斷擴大,從而推動了市場的成長。

例如,2024 年2 月,SilMach 推出了微型衝擊探測器,這是一種晶片大小的混合MEMS 感測器,無需電子設備或電源即可監測變形、振動和衝擊等機械事件,具有長達數十年的使用壽命和廣泛的應用範圍。這項發展可以增強衝擊感測器在各個產業(包括航空航太、汽車和消費性電子產品)的多功能性和應用範圍。這項創新可能會推動採用率的提高,刺激市場成長,並為感測器性能和可靠性設定新標準。

震動感測器產業根據類型、輸出類型、材料、應用、最終用途和地區進行細分。

由於壓阻式裝置在檢測機械應力和衝擊事件方面具有卓越的靈敏度和準確性,到 2032 年,壓阻式裝置將獲得顯著的立足點。壓阻感測器提供高解析度測量,廣泛用於各種應用,包括汽車和航空航太工業,用於監控和安全目的。即使在極端條件下,它們也能提供可靠和精確的資料,這增強了它們的吸引力。此外,壓阻材料和技術的進步正在推動其廣泛採用,鞏固其作為市場領先領域的地位。

由於航空航太領域在確保飛機和太空船的安全和性能方面發揮關鍵作用,到 2032 年,航空航太領域將獲得可觀的收益。先進的衝擊感測器對於監測結構完整性、檢測振動和提供即時資料以防止故障至關重要。對高性能航空航太系統的需求不斷成長,加上嚴格的安全標準,推動了複雜衝擊感測器的採用。這一趨勢將鞏固航空航太領域在衝擊感測器市場的主導地位,反映出其在增強航空航太技術方面的關鍵作用。

在快速工業化、技術創新以及基礎設施和汽車產業投資增加的推動下,亞太地區震動感測器產業將在2024年至2032年實現適度的複合年成長率。該地區不斷發展的航空航太和國防工業,加上消費性電子產品需求的不斷成長,推動了對高性能衝擊感測器的需求。此外,亞太地區強大的製造基礎和不斷擴大的汽車產業對市場成長做出了重大貢獻。該地區充滿活力的工業格局和技術進步使其成為震動感測器市場的主要貢獻者。

目錄

第 1 章:範圍與方法

  • 市場範圍和定義
  • 基本估計和計算
  • 預測參數
  • 數據來源
    • 基本的
    • 中學
      • 付費來源
      • 公共來源

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統分析
  • 供應商矩陣
  • 技術與創新格局
  • 專利分析
  • 重要新聞和舉措
  • 監管環境
  • 衝擊力
    • 成長動力
      • 安全系統的需求不斷增加
      • 汽車產業的需求不斷增加
      • 航空航太和國防領域的採用不斷增加
      • 感測器技術的進步
      • 工業應用和預測性維護
    • 產業陷阱與挑戰
      • 成本限制和價格敏感性
      • 互通性和整合挑戰
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 公司市佔率分析
  • 競爭定位矩陣
  • 戰略展望矩陣

第 5 章:市場估計與預測:按類型,2021 - 2032

  • 主要趨勢
  • 壓電式
  • 壓阻式
  • 電容器
  • 應變計
  • 其他

第 6 章:市場估計與預測:依產出類型,2021 - 2032 年

  • 主要趨勢
  • 模擬
  • 數位的

第 7 章:市場估計與預測:按材料分類,2021 - 2032 年

  • 主要趨勢
  • 電氣石
  • 石英
  • 鹽類
  • 磷酸鎵

第 8 章:市場估計與預測:依應用分類,2021 - 2032

  • 主要趨勢
  • 點擊檢測
  • 微驅動器保護
  • 運輸和處理
  • 汽車安全系統
  • 一般防篡改
  • 其他

第 9 章:市場估計與預測:依最終用途,2021 - 2032 年

  • 主要趨勢
  • 汽車
  • 航太
  • 工業的
  • 消費性電子產品
  • 其他

第 10 章:市場估計與預測:按地區,2021 - 2032

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳新銀行
    • 亞太地區其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地區
  • MEA
    • 阿拉伯聯合大公國
    • 沙烏地阿拉伯
    • 南非
    • MEA 的其餘部分

第 11 章:公司簡介

  • TE Connectivity
  • PCB Piezotronics
  • Spotsee
  • Mobitron AB
  • IMI Sensors
  • SignalQuest, Inc.
  • Meggitt SA
  • Climax Technology, Co. Ltd
  • Biometrics
  • Murata Manufacturing
  • Dytran Instruments, Inc.
  • Honeywell International Inc.
  • MTS Systems Corporation
  • Metrix Instrument Co
  • Emerson Electric Co
  • Digi-key Electronics
  • IMI Sensors
  • i1 Biometrics
簡介目錄
Product Code: 9895

Global Shock Sensor Market size will capture a 20% CAGR between 2024 and 2032, driven by the increased demand for automotive safety and the need for precise monitoring in aerospace and defense applications. In the automotive sector, advanced shock sensors enhance safety features by detecting and responding to vibrations and impacts. Also, the aerospace and defense industries require highly accurate sensors for monitoring structural integrity and ensuring operational reliability. This growing emphasis on safety and precision in these sectors underscores the expanding need for advanced shock sensors, thus fueling market growth.

For instance, in February 2024, SilMach introduced a miniature shock detector-a chip-sized hybrid MEMS sensor that monitors mechanical events like deformations, vibrations, and shocks without electronics or a power source, offering a decades-long lifespan and wide application range. This development could enhance the versatility and application range of shock sensors across various industries, including aerospace, automotive, and consumer electronics. The innovation may drive increased adoption, stimulate market growth, and set new standards for sensor performance and reliability.

The shock sensor industry is segmented based on type, output type, material, application, end-use, and region.

The piezoresistive segment will gain a remarkable foothold by 2032 due to its superior sensitivity and accuracy in detecting mechanical stress and shock events. Piezoresistive sensors offer high-resolution measurements and are widely used in various applications, including automotive and aerospace industries, for monitoring and safety purposes. Their ability to provide reliable and precise data even under extreme conditions enhances their appeal. Moreover, advancements in piezoresistive materials and technologies are driving their widespread adoption, solidifying their position as a leading segment in the market.

The aerospace segment will amass considerable gains by 2032, attributed to its critical role in ensuring safety and performance in aircraft and spacecraft. Advanced shock sensors are essential for monitoring structural integrity, detecting vibrations, and providing real-time data to prevent failures. The increasing demand for high-performance aerospace systems, coupled with rigorous safety standards, drives the adoption of sophisticated shock sensors. This trend will bolster the aerospace segment's dominance in the shock sensor market, reflecting its crucial role in enhancing aerospace technology.

Asia Pacific shock sensor industry will achieve a moderate CAGR from 2024 to 2032, fueled by rapid industrialization, technological innovations, and increasing investments in infrastructure and automotive sectors. The region's growing aerospace and defense industries, coupled with a rising demand for consumer electronics, drive the need for high-performance shock sensors. Additionally, Asia Pacific's strong manufacturing base and expanding automotive sector contribute significantly to market growth. This region's dynamic industrial landscape and technological progress position it as a key contributor to the shock sensor market.

Table of Contents

Chapter 1 Scope & Methodology

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast parameters
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry 360º synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Vendor matrix
  • 3.3 Technology & innovation landscape
  • 3.4 Patent analysis
  • 3.5 Key news and initiatives
  • 3.6 Regulatory landscape
  • 3.7 Impact forces
    • 3.7.1 Growth drivers
      • 3.7.1.1 Increasing demand for security systems
      • 3.7.1.2 Increasing demand from automotive industry
      • 3.7.1.3 Rising adoption in aerospace and defense
      • 3.7.1.4 Advancements in sensor technology
      • 3.7.1.5 Industrial applications and predictive maintenance
    • 3.7.2 Industry pitfalls & challenges
      • 3.7.2.1 Cost constraints and price sensitivity
      • 3.7.2.2 Interoperability and integration challenges
  • 3.8 Growth potential analysis
  • 3.9 Porter's analysis
    • 3.9.1 Supplier power
    • 3.9.2 Buyer power
    • 3.9.3 Threat of new entrants
    • 3.9.4 Threat of substitutes
    • 3.9.5 Industry rivalry
  • 3.10 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Company market share analysis
  • 4.2 Competitive positioning matrix
  • 4.3 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Type, 2021 - 2032 (USD Million & Units)

  • 5.1 Key trends
  • 5.2 Piezoelectric
  • 5.3 Piezoresistive
  • 5.4 Capacitors
  • 5.5 Strain gage
  • 5.6 Others

Chapter 6 Market Estimates & Forecast, By Output type, 2021 - 2032 (USD Million & Units)

  • 6.1 Key trends
  • 6.2 Analog
  • 6.3 Digital

Chapter 7 Market Estimates & Forecast, By Material, 2021 - 2032 (USD Million & Units)

  • 7.1 Key trends
  • 7.2 Tourmaline
  • 7.3 Quartz
  • 7.4 Salts
  • 7.5 Gallium phosphate

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2032 (USD Million & Units)

  • 8.1 Key trends
  • 8.2 Tap detection
  • 8.3 Micro-drive protection
  • 8.4 Shipping and handling
  • 8.5 Automotive security systems
  • 8.6 General tamper-proofing
  • 8.7 Others

Chapter 9 Market Estimates & Forecast, By End Use, 2021 - 2032 (USD Million & Units)

  • 9.1 Key trends
  • 9.2 Automotive
  • 9.3 Aerospace
  • 9.4 Industrial
  • 9.5 Consumer electronics
  • 9.6 Others

Chapter 10 Market Estimates & Forecast, By Region, 2021 - 2032 (USD Million & Units)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 U.S.
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 UK
    • 10.3.2 Germany
    • 10.3.3 France
    • 10.3.4 Italy
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 India
    • 10.4.3 Japan
    • 10.4.4 South Korea
    • 10.4.5 ANZ
    • 10.4.6 Rest of Asia Pacific
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Rest of Latin America
  • 10.6 MEA
    • 10.6.1 UAE
    • 10.6.2 Saudi Arabia
    • 10.6.3 South Africa
    • 10.6.4 Rest of MEA

Chapter 11 Company Profiles

  • 11.1 TE Connectivity
  • 11.2 PCB Piezotronics
  • 11.3 Spotsee
  • 11.4 Mobitron AB
  • 11.5 IMI Sensors
  • 11.6 SignalQuest, Inc.
  • 11.7 Meggitt SA
  • 11.8 Climax Technology, Co. Ltd
  • 11.9 Biometrics
  • 11.10 Murata Manufacturing
  • 11.11 Dytran Instruments, Inc.
  • 11.12 Honeywell International Inc.
  • 11.13 MTS Systems Corporation
  • 11.14 Metrix Instrument Co
  • 11.15 Emerson Electric Co
  • 11.16 Digi-key Electronics
  • 11.17 IMI Sensors
  • 11.18 i1 Biometrics