市場調查報告書
商品編碼
1535865
農業分析市場 - 按產品(軟體、服務)、按農場規模(中小型農場、大型農場)、按應用(畜牧業、水產養殖、精準農業、傳統農業)、按技術和預測,2024 - 2032Agriculture Analytics Market - By Offering (Software, Services), By Farm Size (Small & Medium Farms, Large Farms), By Application (Livestock Farming, Aquaculture Farming, Precision Farming, Conventional Farming), By Technology & Forecast, 2024 - 2032 |
由於人工智慧 (AI)、機器學習和巨量資料分析等先進技術在農業領域的採用,農業分析市場預計在 2024 年至 2032 年期間將呈現 10% 的複合年成長率。這些技術為農民提供了有關作物健康、土壤條件和天氣的見解,從而實現數據驅動的決策。在這些技術的推動下,精準農業可以最佳化資源利用、提高產量並減少對環境的影響。無人機和物聯網感測器等智慧農業工具進一步增強資料收集和分析,改善農業實踐和生產力。
全球對糧食安全和永續農業的需求正在推動市場成長。根據聯合國的估計,到 2050 年,世界人口預計將達到 97 億。 農業分析有助於管理資源和最佳化作物,提高生產力,同時最大限度地減少浪費和環境危害。政府對農業技術的措施和投資也促進了分析技術的採用。例如,2024 年4 月,美國農業部宣佈在2024 會計年度歷史性地投資15 億美元,透過區域保護夥伴計畫(RCPP) 支持合作夥伴驅動的保育和氣候解決方案,與拜登總統的投資美國計劃保持一致。這些努力旨在加強糧食安全並應對氣候變遷和資源短缺的挑戰。
整個農業分析產業根據產品、農場規模、應用、技術和地區進行分類。
由於精準農業應用能夠徹底改變傳統農業實踐,因此到 2032 年,精準農業應用將實現強勁成長。透過利用衛星影像、GPS 和物聯網感測器等各種來源的資料,精準農業使農民能夠根據具體的田間條件實施有針對性的干涉措施。這種方法提高了資源利用效率,最佳化了作物管理,並最大限度地提高了產量,同時最大限度地減少了對環境的影響。精準農業解決方案有助於即時監測土壤健康、天氣模式和作物發育,從而可以精確調整灌溉、施肥和病蟲害防治。將先進分析技術融入精準農業不僅可以提高生產力,還可以透過減少浪費和改善整體農場管理來支持永續農業實踐。
到 2032 年,供應鏈分析領域將佔據顯著的市場佔有率,因為它可以更有效地解決管理農業供應鏈的複雜性。透過利用先進的資料分析和預測模型,利害關係人能夠深入了解供應鏈的每個階段,從生產和加工到分銷和零售。這種增強的可視性有助於最佳化物流、降低成本並提高需求預測的準確性。透過整合天氣狀況、市場趨勢和運輸物流等各種來源的資料,供應鏈分析技術可以增強決策、降低風險並確保生鮮農產品的及時交付。
在該地區重要的農業基礎和不斷增加的技術投資的推動下,亞太地區農業分析產業將在 2032 年實現快速擴張。人工智慧、機器學習和物聯網等先進技術在農業中的採用正在幫助農民最佳化作物產量、更有效地管理資源並改善供應鏈管理。此外,政府對數位農業創新的措施和支持正在促進市場成長。隨著亞太國家尋求農業實踐現代化,以滿足人口成長和氣候條件變化的需求,市場參與者將發現利潤豐厚的成長機會。
The agriculture analytics market is projected to exhibit 10% CAGR over 2024-2032, due to the adoption of advanced technologies like artificial intelligence (AI), machine learning, and big data analytics in agriculture sector. These technologies provide farmers with insights into crop health, soil conditions, and weather, enabling data-driven decisions. Precision agriculture, driven by these technologies, optimizes resource use, increasing yields and reducing environmental impact. Smart farming tools, such as drones and IoT sensors, further enhance data collection and analysis, improving farming practices and productivity.
The global demand for food security and sustainable agriculture are augmenting the market growth. As per the UN estimates, the world population is projected to reach 9.7 billion by 2050. Agriculture analytics help manage resources and optimize crops, boosting productivity while minimizing waste and environmental harm. Government initiatives and investments in agricultural technology are also promoting analytics adoption. For instance, in April 2024, The USDA announced a historic $1.5 billion investment in fiscal year 2024 to support partner-driven conservation and climate solutions through the Regional Conservation Partnership Program (RCPP), aligning with President Biden's Investing in America initiative. These efforts aim to enhance food security and address climate change and resource scarcity challenges.
The overall agriculture analytics industry is classified based on offering, farm size, application, technology, and region.
The precision farming application is set to experience robust growth through 2032, due to its ability to revolutionize traditional farming practices. By leveraging data from various sources such as satellite imagery, GPS, and IoT sensors, precision farming enables farmers to implement targeted interventions tailored to specific field conditions. This approach enhances the efficiency of resource use, optimizes crop management, and maximizes yields while minimizing environmental impact. Precision farming solutions facilitate real-time monitoring of soil health, weather patterns, and crop development, allowing for precise adjustments in irrigation, fertilization, and pest control. The integration of advanced analytics into precision farming not only boosts productivity but also supports sustainable agricultural practices by reducing waste and improving overall farm management.
The supply chain analytics segment will hold a notable market share by 2032, as it addresses the complexities of managing agricultural supply chains more effectively. By utilizing advanced data analytics and predictive modeling, it enables stakeholders to gain deep insights into every stage of the supply chain, from production and processing to distribution and retail. This enhanced visibility helps optimize logistics, reduce costs, and improve the accuracy of demand forecasting. By integrating data from various sources, such as weather conditions, market trends, and transportation logistics, supply chain analytics technology enhances decision-making, mitigates risks, and ensures the timely delivery of fresh produce.
Asia Pacific agriculture analytics industry will record rapid expansion through 2032, driven by the region's significant agricultural base and increasing investments in technology. The adoption of advanced technologies such as AI, machine learning, and IoT in agriculture is helping farmers optimize crop yields, manage resources more efficiently, and improve supply chain management. Additionally, government initiatives and support for digital agriculture innovations are bolstering market growth. As Asia-Pacific countries seek to modernize their agricultural practices to meet the demands of a growing population and changing climate conditions, the market players will find lucrative opportunities for growth.