封面
市場調查報告書
商品編碼
1535998

機載防撞系統市場 - 按類型(ACAS I 和 TCAS I、ACAS II 和 TCAS II、攜帶式防撞系統 (PCAS)、FLARM)、按組件、按最終用途、按銷售管道和預測,2024 - 2032 年

Airborne Collision Avoidance System Market - By Type (ACAS I & TCAS I, ACAS II & TCAS II, Portable Collision Avoidance System (PCAS), FLARM), By Component, By End Use, By Sales Channel & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 200 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

在空中交通密度不斷上升的推動下,機載防撞系統市場規模在 2024 年至 2032 年期間將以 5% 的複合年成長率成長。根據國際航空協統計,2023年,國際航空運輸量較2022年大幅成長41.6%,達到2019年水準的88.6%。隨著全球航空旅行的不斷擴大,日益擁擠的空域內的航班量也在增加。這增加了空中碰撞的風險,並強調了對先進防撞系統的需求。商業和貨運航班數量的不斷增加,以及通用航空飛機的激增,增加了對能夠管理和減輕碰撞風險的強大系統的需求。航空公司和航空業者傾向於投資最先進的防撞技術,以增強態勢感知並確保飛機之間的安全分離,這將提振市場前景。

機載防撞系統產業根據類型、組件、最終用途、銷售管道和地區進行分類。

到 2032 年,顯示單元細分市場將資料成長。這些裝置提供接近警報、碰撞警告和飛行路徑偏差等基本資訊,所有這些對於有效避免碰撞至關重要。它們的設計非常直覺,可與其他航空電子系統無縫整合,以提供清晰簡潔的視覺警報。隨著顯示技術的進步,這些裝置變得越來越複雜,提供更高的清晰度和使用者友善性,從而提高整體飛行安全性。

由於獨特的飛行模式和運行環境需要專門的防撞系統,到 2032 年,旋翼細分市場將佔據顯著的市場佔有率。這些飛機通常在擁擠的空域或具有挑戰性的地形中運行,而傳統的防撞系統可能不那麼有效。因此,越來越需要客製化解決方案來滿足旋翼運行的特定要求。加強安全措施、提高運作效率以及遵守不斷發展的安全法規的需求推動了旋翼飛機採用先進的 ACAS 技術。

由於監管支援和技術創新的結合,到 2032 年,歐洲機載防撞系統產業規模將快速擴大。歐洲國家處於實施嚴格航空安全標準的最前線。歐盟航空安全局 (EASA) 在製定法規方面發揮著至關重要的作用,以確保將最先進的安全技術整合到在該地區營運的飛機中。此外,由領先製造商和研究機構組成的歐洲強大的航空航太業促進了 ACAS 技術的創新和發展。歐洲空域空中交通密度的增加和飛機營運數量的增加進一步促進了積極的區域市場前景。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:機載防撞系統產業洞察

  • 產業生態系統分析
  • 供應商矩陣
  • 利潤率分析
  • 類型和創新格局
  • 專利分析
  • 重要新聞和舉措
  • 監管環境
  • 衝擊力
    • 成長動力
      • 全球對飛機上安裝 ACAS 的要求不斷增加
      • 感測器技術、人工智慧和機器學習的創新
      • 無人機 (UAV) 對 ACAS 的需求不斷成長
      • 關注乘客安全
      • 航空業的擴張
    • 產業陷阱與挑戰
      • 與現有空中交通管制系統整合
      • ACAS實施成本高
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 介紹
  • 公司市佔率
  • 主要市場參與者的競爭分析
    • Honeywell International Inc.
    • Lockheed Martin Corporation
    • BAE Systems Plc
    • L3 Technologies, Inc.
    • Saab Group
    • Rockwell Collins Inc.
    • Garmin Ltd.
  • 競爭定位矩陣
  • 戰略展望矩陣

第 5 章:機載防撞系統市場估計與預測:按類型,2021-2032

  • 主要動向:依類型
  • ACAS I 和 TCAS I
  • ACAS II 和 TCAS II
  • 攜帶式防撞系統 (PCAS)
  • FLARM

第 6 章:機載防撞系統市場估計與預測:按組件分類,2021-2032 年

  • 主要動向:按組件
  • 處理器
  • S 和 C 模式應答器
  • 顯示單元

第 7 章:機載防撞系統市場估計與預測:依最終用途,2021-2032 年

  • 主要動向:依最終用途
  • 固定翼
  • 旋翼
  • 無人機 (UAV)

第 8 章:機載防撞系統市場估計與預測:按銷售管道,2021-2032

  • 主要動向:按銷售管道
  • 原始設備製造商 (OEM)
  • 售後市場

第 9 章:機載防撞系統市場估計與預測:按地區,2021-2032

  • 主要動向:按地區
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳新銀行
    • 亞太地區其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地區
  • MEA
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • MEA 的其餘部分

第 10 章:公司簡介

  • 霍尼韋爾國際公司
  • 洛克希德馬丁公司
  • BAE系統公司
  • L3 技術公司
  • 薩博集團
  • 羅克韋爾柯林斯公司
  • 佳明有限公司
  • QinetiQ Group Limited
  • 泰雷茲集團
  • FLARM科技有限公司
  • 移動眼公司
  • 貝克爾礦業系統公司
  • 六角公司
  • 西屋煞車公司
  • 萊昂納多公司
簡介目錄
Product Code: 7542

The Airborne Collision Avoidance System Market size will grow at 5% CAGR during 2024-2032, driven by the rising air traffic density. According to IATA, in 2023, the international air traffic saw a significant increase of 41.6% compared to 2022, reaching 88.6% of its 2019 levels. As global air travel continues to expand, the volume of flights within increasingly congested airspace is increasing as well. This heightens the risk of mid-air collisions and underscores the need for advanced collision avoidance systems. The growing number of commercial and cargo flights, along with the proliferation of general aviation aircraft, has amplified the demand for robust systems capable of managing and mitigating collision risks. The inclination of airlines and aviation operators towards investing in state-of-the-art collision avoidance technologies that enhance situational awareness and ensure safe separation between aircraft will bolster the market outlook.

The airborne collision avoidance system industry is classified based on type, component, end-use, sales channel, and region.

The display unit segment will grow rapidly through 2032. Display units are crucial for presenting real-time data to pilots, enabling them to make informed decisions quickly. These units provide essential information such as proximity alerts, collision warnings, and flight path deviations, all of which are vital for effective collision avoidance. They are designed to be highly intuitive, integrating seamlessly with other avionics systems to deliver clear and concise visual alerts. With advancements in display technology, these units are becoming more sophisticated, offering enhanced clarity and user-friendliness, which in turn improves overall flight safety.

The rotary wing segment will hold a notable market share by 2032, owing to the requirement of specialized collision avoidance systems due to unique flight patterns and operational environments. These aircraft often operate in congested airspace or in challenging terrains where conventional collision avoidance systems may not be as effective. As a result, there is a growing need for tailored solutions that address the specific requirements of rotary wing operations. The adoption of advanced ACAS technologies in rotary wing aircraft is driven by the need for enhanced safety measures, increased operational efficiency, and compliance with evolving safety regulations.

Europe airborne collision avoidance system industry size will expand at a fast pace through 2032, due to a combination of regulatory support and technological innovation. European countries are at the forefront of implementing stringent aviation safety standards. The European Union Aviation Safety Agency (EASA) plays a crucial role in setting regulations that ensure the integration of state-of-the-art safety technologies in aircraft operating within the region. Additionally, Europe's robust aerospace sector, comprising leading manufacturers and research institutions, fosters innovation and development in ACAS technologies. The increasing air traffic density and the rising number of aircraft operations in European airspace further contribute to a positive regional market outlook.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data Sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Airborne collision avoidance system market 360º synopsis, 2021 - 2032
  • 2.2 Business trends
    • 2.2.1 Total addressable market (TAM), 2024-2032
  • 2.3 Regional trends
  • 2.4 Type trends
  • 2.5 Component trends
  • 2.6 End-use trends
  • 2.7 Sales channel trends

Chapter 3 Airborne Collision Avoidance System Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Vendor matrix
  • 3.3 Profit margin analysis
  • 3.4 Type & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news and initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Increasing global mandates for ACAS installation in aircraft
      • 3.8.1.2 Innovations in sensor technology, AI, and machine learning
      • 3.8.1.3 Growing demand for ACAS in unmanned aerial vehicles (UAVs)
      • 3.8.1.4 Focus on Passenger Safety
      • 3.8.1.5 Expansion of the aviation industry
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 Integration with existing air traffic control systems
      • 3.8.2.2 High cost of ACAS implementation
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share, 2023
  • 4.3 Competitive analysis of major market players, 2023
    • 4.3.1 Honeywell International Inc.
    • 4.3.2 Lockheed Martin Corporation
    • 4.3.3 BAE Systems Plc
    • 4.3.4 L3 Technologies, Inc.
    • 4.3.5 Saab Group
    • 4.3.6 Rockwell Collins Inc.
    • 4.3.7 Garmin Ltd.
  • 4.4 Competitive positioning matrix, 2023
  • 4.5 Strategic outlook matrix, 2023

Chapter 5 Airborne Collision Avoidance System Market Estimates and Forecast, By Type (USD Million), 2021-2032

  • 5.1 Key trends, by type
  • 5.2 ACAS I & TCAS I
  • 5.3 ACAS II & TCAS II
  • 5.4 Portable Collision Avoidance System (PCAS)
  • 5.5 FLARM

Chapter 6 Airborne Collision Avoidance System Market Estimates and Forecast, By Component (USD Million), 2021-2032

  • 6.1 Key trends, by component
  • 6.2 Processor
  • 6.3 Mode S & C Transponder
  • 6.4 Display Unit

Chapter 7 Airborne Collision Avoidance System Market Estimates and Forecast, By End-use (USD Million), 2021-2032

  • 7.1 Key trends, by end-use
  • 7.2 Fixed Wing
  • 7.3 Rotary Wing
  • 7.4 Unmanned Aerial Vehicles (UAVs)

Chapter 8 Airborne Collision Avoidance System Market Estimates and Forecast, By Sales Channel (USD Million), 2021-2032

  • 8.1 Key trends, by sales channel
  • 8.2 Original Equipment Manufacturer (OEM)
  • 8.3 Aftermarket

Chapter 9 Airborne Collision Avoidance System Market Estimates and Forecast, By Region (USD Million), 2021-2032

  • 9.1 Key trends, by region
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 South Africa
    • 9.6.2 Saudi Arabia
    • 9.6.3 UAE
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles (Business Overview, Financial Overview, Product Landscape, Strategic Outlook, SWOT Analysis)

  • 10.1 Honeywell International Inc.
  • 10.2 Lockheed Martin Corporation
  • 10.3 BAE Systems Plc
  • 10.4 L3 Technologies, Inc.
  • 10.5 Saab Group
  • 10.6 Rockwell Collins Inc.
  • 10.7 Garmin Ltd.
  • 10.8 QinetiQ Group Plc.
  • 10.9 Thales Group
  • 10.10 FLARM Technology Ltd.
  • 10.11 Mobileye N.V.
  • 10.12 Becker Mining Systems AG
  • 10.13 Hexagon AB
  • 10.14 Wabtec Corporation
  • 10.15 Leonardo S.p.A