封面
市場調查報告書
商品編碼
1573852

醫療編碼市場中的人工智慧、機會、成長動力、產業趨勢分析與預測,2024-2032

AI in Medical Coding Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2024-2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 100 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

全球人工智慧醫療編碼市場估值為24 億美元,預計2024 年至2032 年複合年成長率為13.6%。以及編碼資料激增。

醫療編碼系統的複雜性不斷增加,加上高流動率和漫長的培訓過程,導致熟練的醫療編碼員明顯短缺。這種差距會產生明顯的影響,醫院和診所會遇到計費延遲和不準確的情況。美國健康資訊管理協會 (AHIMA) 強調了認證醫療編碼員供需之間日益擴大的差距。

隨著對準確性的要求不斷提高,人工智慧在醫療編碼中的採用正在不斷增加。自動化機器學習、自然語言處理 (NLP) 和機器人流程自動化 (RPA) 等先進技術正在改變編碼模式,最大限度地減少錯誤並提高精確度。

整個產業分為模式、應用、最終用途和區域。

該市場分為外包和內部市場。外包領域佔據主導地位,到 2023 年估值將達到 17 億美元。他們的專業知識不僅可以提高編碼準確性,還可以確保合規性,這是計費和監管標準的關鍵。此外,外包使醫療保健提供者能夠靈活地調整其編碼操作以響應需求波動,從而避免人員配置限制。

醫療編碼市場中的人工智慧依最終用途分為醫療保健提供者和診斷中心、醫療編碼公司、保險實體和政府機構。在分析期間,醫療保健提供者和診斷中心部門預計將以 13.7% 的複合年成長率擴張。鑑於每天處理大量患者就診、治療和診斷測試,醫療保健提供者和診斷中心會產生大量醫療記錄,需要精確、高效的編碼。

到 2023 年,北美醫療編碼市場的人工智慧價值將達到 12 億美元,預測分析期間的複合年成長率為 12.5%。人工智慧在醫療編碼中的整合得到了北美廣泛採用的 EHR 系統的有力支持,為人工智慧分析產生了大量資料,以提高編碼的準確性和效率。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統分析
  • 產業影響力
    • 成長動力
      • 越來越重視醫療編碼的卓越準確性
      • 缺乏熟練的醫療編碼員
      • 大量增加編碼資料
    • 產業陷阱與挑戰
      • 初始投資高
  • 成長潛力分析
  • 監管環境
  • 創新格局
  • 波特的分析
  • PESTEL分析
  • 未來市場趨勢
  • 差距分析

第 4 章:競爭格局

  • 介紹
  • 公司矩陣分析
  • 公司股份分析
  • 競爭定位矩陣
  • 戰略儀表板

第 5 章:市場估計與預測:按模式,2021 - 2032

  • 主要趨勢
  • 外包
  • 內部

第 6 章:市場估計與預測:按應用分類,2021 - 2032

  • 主要趨勢
  • 自動編碼
  • 詐欺和錯誤檢測
  • 數據分析
  • 其他應用

第 7 章:市場估計與預測:按最終用途,2021 - 2032 年

  • 主要趨勢
  • 醫療保健提供者和診斷中心
  • 保險公司
  • 醫療編碼公司
  • 政府機構

第 8 章:市場估計與預測:按地區,2021 - 2032

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 西班牙
    • 義大利
    • 荷蘭
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 日本
    • 印度
    • 澳洲
    • 韓國
    • 亞太地區其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地區
  • 中東和非洲
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 中東和非洲其他地區

第 9 章:公司簡介

  • 3M
  • AGS Health
  • Aideo Technologies
  • aiHealth
  • Arintra
  • Buddi AI
  • Clinion
  • CodaMetrix
  • Corti HQ
  • Datavant
  • Diagnoss
  • Fathom, Inc.
  • MediCodio
  • Nuance Communications, Inc.
  • Semantic Health
簡介目錄
Product Code: 11081

The Global AI in Medical Coding Market was valued at USD 2.4 billion and is projected to grow at a CAGR of 13.6% from 2024 to 2032. This growth is fueled by an increasing emphasis on accuracy in medical coding, a shortage of skilled coders, and a surge in coding data.

The rising complexity of medical coding systems, coupled with high turnover rates and a lengthy training process, has led to a notable shortage of skilled medical coders. This gap has tangible repercussions, with hospitals and clinics experiencing billing delays and inaccuracies. The American Health Information Management Association (AHIMA) has underscored this widening gap between the demand for and supply of certified medical coders.

As the push for accuracy intensifies, AI adoption in medical coding is on the rise. Advanced technologies like automated machine learning, natural language processing (NLP), and robotic process automation (RPA) are transforming the coding landscape, minimizing errors and boosting precision.

The overall industry is divided into mode, application, end-use, and region.

The market is divided into outsourced and in-house segments. The outsourced segment dominated, boasting a valuation of USD 1.7 billion in 2023. Outsourcing firms bring onboard seasoned and certified medical coders, adept in the latest coding standards and regulations. Their expertise not only boosts coding accuracy but also ensures compliance, key for billing and regulatory standards. Moreover, outsourcing grants healthcare providers the agility to adjust their coding operations in response to demand fluctuations, sidestepping staffing constraints.

The AI in medical coding market is segmented by end-use into healthcare providers and diagnostic centers, medical coding firms, insurance entities, and government agencies. The healthcare providers and diagnostic centers segment is projected to expand at a CAGR of 13.7% during the analysis period. Given their daily handling of numerous patient visits, treatments, and diagnostic tests, healthcare providers and diagnostic centers generate a vast array of medical records necessitating precise and efficient coding.

North America AI in medical coding market was valued at USD 1.2 billion in 2023, with projections of a 12.5% CAGR over the analysis period. The integration of AI in medical coding finds robust support in North America's widespread adoption of EHR systems, generating a substantial data volume for AI analysis to bolster coding accuracy and efficiency.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates and calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Growing emphasis on superior accuracy in medical coding
      • 3.2.1.2 Shortage of skilled medical coders
      • 3.2.1.3 Extensively increasing coding data
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High initial investments
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
  • 3.5 Innovation landscape
  • 3.6 Porter's analysis
  • 3.7 PESTEL analysis
  • 3.8 Future market trends
  • 3.9 GAP analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company matrix analysis
  • 4.3 Company share analysis
  • 4.4 Competitive positioning matrix
  • 4.5 Strategy dashboard

Chapter 5 Market Estimates and Forecast, By Mode, 2021 - 2032 ($ Mn)

  • 5.1 Key trends
  • 5.2 Outsourced
  • 5.3 In-house

Chapter 6 Market Estimates and Forecast, By Application, 2021 - 2032 ($ Mn)

  • 6.1 Key trends
  • 6.2 Automated coding
  • 6.3 Fraud and error detection
  • 6.4 Data analysis
  • 6.5 Other applications

Chapter 7 Market Estimates and Forecast, By End-Use, 2021 - 2032 ($ Mn)

  • 7.1 Key trends
  • 7.2 Healthcare providers and diagnostic centers
  • 7.3 Insurance companies
  • 7.4 Medical coding companies
  • 7.5 Government bodies

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2032 ($ Mn)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Spain
    • 8.3.5 Italy
    • 8.3.6 Netherlands
    • 8.3.7 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 Japan
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 South Korea
    • 8.4.6 Rest of Asia Pacific
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
    • 8.5.4 Rest of Latin America
  • 8.6 Middle East and Africa
    • 8.6.1 South Africa
    • 8.6.2 Saudi Arabia
    • 8.6.3 UAE
    • 8.6.4 Rest of Middle East and Africa

Chapter 9 Company Profiles

  • 9.1 3M
  • 9.2 AGS Health
  • 9.3 Aideo Technologies
  • 9.4 aiHealth
  • 9.5 Arintra
  • 9.6 Buddi AI
  • 9.7 Clinion
  • 9.8 CodaMetrix
  • 9.9 Corti HQ
  • 9.10 Datavant
  • 9.11 Diagnoss
  • 9.12 Fathom, Inc.
  • 9.13 MediCodio
  • 9.14 Nuance Communications, Inc.
  • 9.15 Semantic Health