封面
市場調查報告書
商品編碼
1639205

化合物半導體市場機會、成長動力、產業趨勢分析與預測 2024 - 2032

Compound Semiconductor Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 200 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

全球化合物半導體市場到2023 年價值為445 億美元,預計2024 年至2032 年將以10.9% 的複合年成長率成長。頻等領域提供卓越的性能。這些材料在電信、電動車、再生能源和航太領域表現出色,其處理極端條件、更高功率和耐熱性的能力超過了傳統的矽半導體。

市場的主要驅動力之一是對高性能材料的先進技術的需求不斷成長。化合物半導體在功率效率和耐熱性方面優於矽,使其非常適合下一代應用。例如,在電信領域,這些材料對於 5G 基礎設施和衛星通訊至關重要,其中高頻和最小能量損失至關重要。此外,它們的堅固性使其非常適合在惡劣環境中使用,例如可靠性至關重要的國防和航太。

市場根據材料類型進行細分,包括 GaN、砷化鎵 (GaAs)、碳化矽 (SiC)、磷化銦 (InP)、矽鍺 (SiGe) 和磷化鎵 (GaP) 等。 GaN 領域預計將大幅成長,到 2032 年將達到 250 億美元。這使其成為電力電子、射頻 (RF) 設備和高效系統的關鍵材料,特別是在 5G 等應用中。

市場範圍
開始年份 2023年
預測年份 2024-2032
起始值 445 億美元
預測值 1,116 億美元
複合年成長率 10.9%

就沉積技術而言,市場包括化學氣相沉積(CVD)、分子束外延(MBE)和氫化物氣相外延(HVPE)等方法。其中,MBE 因其能夠在原子層面上精確控制薄膜沉積、確保生產高品質、無缺陷的層而受到關注。這在量子計算、光電子和高頻設備等材料純度至關重要的領域尤其有價值。

2023年美國化合物半導體市場將佔據30.6%的佔有率。美國在半導體研發方面也處於領先地位,這得益於旨在增強國內製造業和減少對進口依賴的措施。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統分析
    • 影響價值鏈的因素
    • 利潤率分析
    • 干擾
    • 未來展望
    • 製造商
    • 經銷商
  • 供應商格局
  • 利潤率分析
  • 重要新聞和舉措
  • 監管環境
  • 衝擊力
    • 成長動力
      • 電動汽車和再生能源
      • 小型化、緊湊化設計要求
      • 5G網路快速發展
      • 研發投入不斷增加
      • 不斷成長的光子學和光電子學需求
    • 產業陷阱與挑戰
      • 生產成本高
      • 材料可用性和供應鏈風險
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 競爭定位矩陣
  • 戰略展望矩陣

第 5 章:市場估計與預測:按沉積技術,2021-2032 年

  • 主要趨勢
  • 化學氣相沉積 (CVD)
  • 分子束外延
  • 氫化物氣相外延 (HVPE)
  • 氨熱法
  • 液相外延
  • 原子層沉積 (ALD)
  • 其他

第 6 章:市場估計與預測:按類型,2021-2032 年

  • 主要趨勢
  • 氮化鎵
    • 氮化鋁鎵 (AlGaN)
    • 氮化銦鎵 (INGAN)
  • 砷化鎵 (GAAS)
    • 砷化鋁鎵 (ALGAAS)
  • 碳化矽(SiC)
  • 磷化銦 (INP)
  • 矽鍺 (SIGE)
  • 磷化鎵 (GAP)
    • 磷化鋁鎵 (ALGAP)
  • 其他

第 7 章:市場估計與預測:依產品分類,2021-2032 年

  • 主要趨勢
  • 引領
  • 光電
  • 射頻元件
    • 射頻功率
    • 射頻開關
    • 其他射頻設備
  • 電力電子
    • 離散的
      • 電晶體
        • 金屬氧化物場效電晶體 (MOSFET)
        • 高電子遷移率電晶體 (HEMT)
    • 二極體
      • 肖特基二極體
      • PIN二極體
    • 裸晶片
    • 模組

第 8 章:市場估計與預測:按應用分類,2021-2032 年

  • 主要趨勢
  • 一般照明
  • 電信
  • 軍事、國防和航太
  • 汽車
  • 電源
  • 數據通訊
  • 消費性展示
  • 商業的
  • 消費性設備
  • 其他

第 9 章:市場估計與預測:按地區,2021-2032 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 俄羅斯
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲
  • 拉丁美洲
    • 巴西
    • 墨西哥
  • MEA
    • 阿拉伯聯合大公國
    • 南非
    • 沙烏地阿拉伯

第 10 章:公司簡介

  • Advanced Wireless Semiconductor Company
  • Ams osram ag
  • Cree Inc.
  • Gan systems
  • GaN Systems Inc.
  • Infineon technologies ag
  • Microsemi Corporation (Microchip Technology Inc.)
  • Mitsubishi electric corporation
  • Mitsubishi Electric Corporation
  • Nichia corporation
  • Nxp semiconductors nv
  • ON Semiconductor Corp. (Semiconductor Components Industries Llc)
  • Qorvo, inc.
  • Renesas electronics corporation
  • Samsung electronics co., ltd.
  • Skyworks solutions, inc.
  • STMicroelectronics NV
  • Taiwan Semiconductor Manufacturing Company Ltd.
  • Texas Instruments Inc.
  • WIN Semiconductors Corp.
  • Wolfspeed, inc.
簡介目錄
Product Code: 12298

The Global Compound Semiconductor Market, valued at USD 44.5 billion in 2023, is projected to grow at 10.9% CAGR from 2024 to 2032. This growth is driven by the distinct advantages of compound semiconductors, which provide superior performance in high-frequency, high-power, and energy-efficient applications. These materials excel in telecommunications, electric vehicles, renewable energy, and aerospace, where their ability to handle extreme conditions, higher power, and heat resistance surpasses traditional silicon semiconductors.

One of the key drivers of the market is the growing demand for advanced technologies that require high-performance materials. Compound semiconductors outperform silicon in terms of power efficiency and heat resistance, making them well-suited for next-generation applications. For example, in telecommunications, these materials are critical for 5G infrastructure and satellite communications, where high frequencies and minimal energy loss are essential. Additionally, their ruggedness makes them ideal for use in harsh environments, such as defense and aerospace, where reliability is paramount.

The market is segmented based on material type, including GaN, gallium arsenide (GaAs), silicon carbide (SiC), indium phosphide (InP), silicon germanium (SiGe), and gallium phosphide (GaP), among others. The GaN segment is anticipated to grow significantly, reaching USD 25 billion by 2032. GaN is highly sought after for its wide bandgap, which enables it to handle high voltages, frequencies, and temperatures. This makes it a key material for power electronics, radio frequency (RF) devices, and high-efficiency systems, particularly in applications such as 5G.

Market Scope
Start Year2023
Forecast Year2024-2032
Start Value$44.5 Billion
Forecast Value$111.6 Billion
CAGR10.9%

In terms of deposition technologies, the market includes methods such as Chemical Vapor Deposition (CVD), Molecular Beam Epitaxy (MBE), and Hydride Vapor Phase Epitaxy (HVPE). Among these, MBE is gaining traction due to its ability to precisely control thin film deposition at the atomic level, ensuring the production of high-quality, defect-free layers. This is particularly valuable in fields like quantum computing, optoelectronics, and high-frequency devices, where material purity is crucial.

U.S. compound semiconductor market in 2023 held 30.6% share in 2023. The region is seeing rapid growth driven by investments in high-performance applications, such as 5G networks, electric vehicles, and renewable energy technologies. The U.S. is also a leader in semiconductor research and development, bolstered by initiatives aimed at enhancing domestic manufacturing and reducing dependence on imports.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021-2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Factor affecting the value chain
    • 3.1.2 Profit margin analysis
    • 3.1.3 Disruptions
    • 3.1.4 Future outlook
    • 3.1.5 Manufacturers
    • 3.1.6 Distributors
  • 3.2 Supplier landscape
  • 3.3 Profit margin analysis
  • 3.4 Key news & initiatives
  • 3.5 Regulatory landscape
  • 3.6 Impact forces
    • 3.6.1 Growth drivers
      • 3.6.1.1 Electric vehicles and renewable energy
      • 3.6.1.2 Miniaturization and compact design requirements
      • 3.6.1.3. Rapid development of 5 G networks
      • 3.6.1.4 Rising R&D investment
      • 3.6.1.5 Growing photonics and optoelectronics demand
    • 3.6.2 Industry pitfalls & challenges
      • 3.6.2.1 High production costs
      • 3.6.2.2 Material availability and supply chain risks
  • 3.7 Growth potential analysis
  • 3.8 Porter's analysis
  • 3.9 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Deposition Technologies, 2021-2032 (USD Million)

  • 5.1 Key trends
  • 5.2 Chemical Vapor Deposition (CVD)
  • 5.3 Molecular Beam Epitaxy
  • 5.4 Hydride Vapor Phase Epitaxy (HVPE)
  • 5.5 Ammonothermal
  • 5.6 Liquid phase epitaxy
  • 5.7 Atomic Layer Deposition (ALD)
  • 5.8 Others

Chapter 6 Market Estimates & Forecast, By Type, 2021-2032 (USD Billion & Units)

  • 6.1 Key trends
  • 6.2 GaN
    • 6.2.1 Aluminum Gallium Nitride (AlGaN)
    • 6.2.2 Indium Gallium Nitride (INGAN)
  • 6.3 Gallium Arsenide (GAAS)
    • 6.3.1 Aluminum Gallium Arsenide (ALGAAS)
  • 6.4 Silicon Carbide (SiC)
  • 6.5 Indium Phosphide (INP)
  • 6.6 Silicon Germanium (SIGE)
  • 6.7 Gallium Phosphide (GAP)
    • 6.7.1 Aluminum Gallium Phosphide (ALGAP)
  • 6.8 Others

Chapter 7 Market Estimates & Forecast, By Product, 2021-2032 (USD Billion & Units)

  • 7.1 Key trends
  • 7.2 LED
  • 7.3 Optoelectronics
  • 7.4 RF Devices
    • 7.4.1 RF Power
    • 7.4.2 RF switching
    • 7.4.3 Other RF devices
  • 7.5 Power electronics
    • 7.5.1 Discrete
      • 7.5.1.1 Transistor
        • 7.5.1.1.1 Metal Oxide Field-Effect Transistor (MOSFET)
        • 7.5.1.1.2 High Electron Mobility Transistor (HEMT)
    • 7.5.2 Diode
      • 7.5.2.1 Schottky diode
      • 7.5.2.2 PIN diode
    • 7.5.3 Bare die
    • 7.5.4 Module

Chapter 8 Market Estimates & Forecast, By Application, 2021-2032 (USD Billion & Units)

  • 8.1 Key trends
  • 8.2 General lighting
  • 8.3 Telecommunication
  • 8.4 Military, defense and aerospace
  • 8.5 Automotive
  • 8.6 Power supply
  • 8.7 Datacom
  • 8.8 Consumer display
  • 8.9 Commercial
  • 8.10 Consumer devices
  • 8.11 Others

Chapter 9 Market Estimates & Forecast, By Region, 2021-2032 (USD Billion & Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Russia
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 Australia
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia

Chapter 10 Company Profiles

  • 10.1 Advanced Wireless Semiconductor Company
  • 10.2 Ams osram ag
  • 10.3 Cree Inc.
  • 10.4 Gan systems
  • 10.5 GaN Systems Inc.
  • 10.6 Infineon technologies ag
  • 10.7 Microsemi Corporation (Microchip Technology Inc.)
  • 10.8 Mitsubishi electric corporation
  • 10.9 Mitsubishi Electric Corporation
  • 10.10 Nichia corporation
  • 10.11 Nxp semiconductors n.v.
  • 10.12 ON Semiconductor Corp. (Semiconductor Components Industries Llc)
  • 10.13 Qorvo, inc.
  • 10.14 Renesas electronics corporation
  • 10.15 Samsung electronics co., ltd.
  • 10.16 Skyworks solutions, inc.
  • 10.17 STMicroelectronics N.V.
  • 10.18 Taiwan Semiconductor Manufacturing Company Ltd.
  • 10.19 Texas Instruments Inc.
  • 10.20 WIN Semiconductors Corp.
  • 10.21 Wolfspeed, inc.