![]() |
市場調查報告書
商品編碼
1664839
MLOps 市場機會、成長動力、產業趨勢分析與 2025 - 2034 年預測MLOps Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034 |
2024 年全球 MLOps 市場價值為 17 億美元,預計 2025 年至 2034 年期間複合年成長率將達到 37.4%。 向雲端運算的轉變日益成為主要驅動力,因為雲端平台提供了有效管理大量資料集和複雜機器學習工作流程所需的可擴展性和靈活性。
基於雲端的 MLOps 解決方案使組織能夠在多個環境中無縫部署模型。這種方法消除了對大量內部部署基礎架構的需求,同時提供了增強的效能和可擴展性。透過利用這些解決方案,企業可以簡化機器學習操作並以更高的效率適應不斷變化的需求。
市場範圍 | |
---|---|
起始年份 | 2024 |
預測年份 | 2025-2034 |
起始值 | 17億美元 |
預測值 | 390億美元 |
複合年成長率 | 37.4% |
對於旨在保持競爭優勢的組織來說,縮短新的機器學習模型的上市時間已經成為關鍵的優先事項。 MLOps 平台透過持續整合和持續部署 (CI/CD) 實現開發、測試和部署流程的自動化,從而實現這一點。這種自動化可以加速工作流程、最大限度地減少人工干預並確保模型保持可擴展且持續更新。
MLOps 市場按組件細分為平台和服務。 2024 年,平台引領市場,佔據 72% 的總佔有率。這種主導地位源於對統一資料管道管理、模型部署、實驗追蹤和效能監控的端到端解決方案日益成長的需求。綜合平台越來越受到尋求擴展人工智慧計畫同時簡化工作流程的企業的青睞。
諮詢、整合和託管服務等服務也正在經歷顯著的成長。這些服務可協助組織克服雲端遷移、基礎架構最佳化和合規性要求等採用挑戰。客製化指導需求的增加凸顯了 MLOps 生態系統中專家支援的重要性。
根據最終用途,市場分為大型企業和中小型企業。 2024 年,大型企業佔據了 64.3% 的市場佔有率,這得益於採用 MLOps 解決方案來最佳化 AI 工作流程、增強預測分析和改善治理。同時,中小企業正在迅速採用具有成本效益、方便用戶使用的工具,以使其能夠實現流程自動化並促進創新。人工智慧工具的日益普及支持了這一趨勢,使得小型企業無需進行大量的基礎設施投資即可實現可擴展性。
在北美,美國引領 MLOps 市場,預計到 2034 年將超過 110 億美元。對雲端基礎設施和高效能運算的投資進一步推動了MLOps解決方案的採用,幫助企業改善模型營運並縮短部署時間。
報告內容
The Global MLOps Market was valued at USD 1.7 billion in 2024 and is forecasted to grow at a robust CAGR of 37.4% from 2025 to 2034. The increasing shift towards cloud computing serves as a major driver, as cloud platforms offer the scalability and flexibility needed to manage extensive datasets and complex machine learning workflows efficiently.
Cloud-based MLOps solutions enable organizations to deploy models seamlessly across multiple environments. This approach eliminates the need for extensive on-premises infrastructure while delivering enhanced performance and scalability. By leveraging these solutions, businesses can streamline machine learning operations and adapt to evolving demands with greater efficiency.
Market Scope | |
---|---|
Start Year | 2024 |
Forecast Year | 2025-2034 |
Start Value | $1.7 billion |
Forecast Value | $39 billion |
CAGR | 37.4% |
Reducing the time-to-market for new machine learning models has become a critical priority for organizations aiming to maintain a competitive edge. MLOps platforms facilitate this by automating the development, testing, and deployment processes through continuous integration and continuous deployment (CI/CD). This automation accelerates workflows, minimizes manual intervention, and ensures models remain scalable and consistently updated.
The MLOps market is segmented by components into platforms and services. Platforms led the market in 2024, capturing 72% of the total share. This dominance stems from the growing demand for end-to-end solutions that unify data pipeline management, model deployment, experiment tracking, and performance monitoring. Comprehensive platforms are increasingly favored by enterprises seeking to scale artificial intelligence initiatives while simplifying their workflows.
Services, including consulting, integration, and managed services, are also witnessing significant growth. These services assist organizations in overcoming adoption challenges such as cloud migration, infrastructure optimization, and compliance requirements. The rise in demand for tailored guidance highlights the importance of expert support in the MLOps ecosystem.
By end use, the market is categorized into Large Enterprises and SME. In 2024, Large Enterprises held a 64.3% market share, driven by the adoption of MLOps solutions to optimize AI workflows, enhance predictive analytics, and improve governance. Meanwhile, SME are rapidly embracing cost-effective, user-friendly tools that enable them to automate processes and foster innovation. The growing accessibility of AI tools supports this trend, allowing smaller businesses to achieve scalability without heavy infrastructure investments.
In North America, the United States leads the MLOps market, projected to surpass USD 11 billion by 2034. The country's strong adoption of AI and machine learning across industries such as healthcare, finance, and manufacturing underscores its pivotal role in driving market expansion. Investments in cloud infrastructure and high-performance computing further propel the adoption of MLOps solutions, helping businesses improve model operations and reduce deployment times.