市場調查報告書
商品編碼
1519339
2024-2032 年按組件、資料庫類型(關係型、非關係型)、分析類型、部署模型、應用程式、行業垂直和區域分類的圖數據庫市場報告Graph Database Market Report by Component, Type of Database (Relational, Non-Relational ), Analysis Type, Deployment Model, Application, Industry Vertical, and Region 2024-2032 |
2023年全球圖資料庫IMARC Group規模達17億美元。網路安全中擴大採用圖形資料庫進行威脅偵測和網路分析,對即時分析和人工智慧驅動的見解不斷成長的需求,以及在醫療保健和金融等行業中不斷擴大的資料整合和個人化服務應用程式,都是其中的一些因素促進圖資料庫市場成長的關鍵因素。
主要市場促進因素:圖資料庫解決方案在零售、資訊科技(IT)、電信、製造、運輸以及銀行、金融服務和保險(BFSI) 等不同產業垂直領域的使用不斷增加,是推動這一趨勢的關鍵因素之一。
主要市場趨勢:全球範圍內擴大採用基於人工智慧 (AI) 的圖形資料庫工具,這是推動市場成長的重要趨勢之一。
競爭格局:一些領先的圖形資料庫市場公司包括 Amazon Web Services Inc. (Amazon.com Inc.)、Datastax Inc.、Franz Inc.、International Business Machines Corporation、Marklogic Corporation、Microsoft Corporation、Neo4j Inc.、Objectivity Inc. .、Oracle Corporation、Stardog Union、Tibco Software Inc. 和Tigergraph Inc. 等。
地理趨勢:根據報告,北美目前在全球市場上佔據主導地位。該地區技術使用的擴大是推動圖數據庫市場成長的主要原因之一。 IBM、微軟、Neo4j 和 Oracle 等圖資料庫廠商在北美的擴張預計將進一步推動市場擴張。
挑戰與機會:圖資料庫市場的挑戰包括資料隱私問題、從關聯式資料庫遷移的複雜性以及對熟練人員的需求。機會在於解決不斷發展的用例,例如詐欺檢測、個人化推薦系統和知識圖應用程式,從而推動創新和市場擴張。
數據量和複雜度不斷增加
推動市場成長的主要因素之一是世界各地眾多組織產生的資料量不斷增加。隨著下一代技術的出現和互聯設備的激增,企業正在從各種來源產生大量資料,包括社交媒體、客戶互動、物聯網設備、交易和雲端運算。例如,據思科稱,資料聯網在 2019 年產生了約 507.5 zetta位元組的資料。由不安全的機構造成的。為此,公司擴大整合圖形資料庫解決方案,以從資料中獲得有價值的見解,並透過提供資料清理、驗證和豐富功能來確保資料的安全性和準確性。反過來,預計這將推動未來幾年圖資料庫市場的需求。
增加產品供應
各個主要參與者正在推出各種圖資料庫解決方案,以滿足不同的用例和要求。例如,2024 年 4 月,Neo4j 與 Google Cloud 合作,為 GenAI 應用程式推出了新的 GraphRAG 功能。此次發布將加速生成式人工智慧應用程式在幾個關鍵階段的開發和部署。這些結果解決了企業在建立和部署成功的 GenAI 應用程式時遇到的複雜性和幻覺問題,這些應用程式需要即時、上下文豐富的資料和準確、可解釋的結果。同樣,2023 年 12 月,亞馬遜網路服務 (AWS) 推出了一款新的分析資料庫引擎,該引擎結合了向量搜尋和圖形資料的強大功能。這項名為 Amazon Neptune Analytics 的新服務在拉斯維加斯舉行的再投資會議上正式發表。這項新服務採用即用即付模式,無需一次性安裝費或定期訂閱費用。它現已在部分 AWS 區域推出,包括美國東部、美國西部、亞太地區和歐洲。圖資料庫的此類創新預計將在未來幾年推動圖資料庫的市場佔有率。
產品在各行業的應用不斷成長
圖數據庫正在被各個行業採用,包括金融、醫療保健、零售、物流和製造,以解決特定的用例和業務挑戰。例如,2024年1月,全球製藥公司施維雅的研發部門開始利用圖技術來縮短藥物研究時間並提高候選藥物在臨床階段的成功率。該公司正在使用名為 Pegasus 的 Neo4j 圖表,這使他們能夠更好地組織和探測第三方和專有資料。同樣,金融領域也擴大使用圖數據庫來檢測和防止詐欺活動,也催化了圖數據庫市場的近期價格。例如,Amazon Neptune 等圖形資料庫擴大用於執行查詢,因為它們可以同時遍歷資料並執行計算。圖形表示多連接網路上的交易和各方,並發現連接模式和鏈。因此,圖資料庫被廣泛用於反洗錢(AML)應用程式,因為它們可以幫助發現可疑交易的模式。
IMARC Group提供了全球圖資料庫市場報告每個細分市場的主要趨勢分析,以及 2024 年至 2032 年全球、區域和國家層面的預測。我們的報告根據組件、資料庫類型、分析類型、部署模型、應用程式和垂直行業對市場進行了分類。
軟體
服務
軟體佔最大的市場佔有率
根據組件,全球圖數據庫市場可分為軟體和服務。報告稱,軟體佔據了最大的市場佔有率。
此細分市場的成長可歸因於眾多公司擴大採用軟體即服務 (SaaS) 來管理其複雜資料。此外,IMARC 的圖形資料庫市場統計數據表明,軟體部署通常涉及預付費用或訂閱費,從長遠來看,這可能更具成本效益,特別是對於有持續資料管理需求的組織而言。
關係型(SQL)
非關係型 (NoSQL)
關係型(SQL)資料庫在市場上表現出明顯的主導地位
根據資料庫類型,全球圖資料庫市場可分為關係型(SQL)和非關係型(NoSQL)。報告指出,關係型(SQL)資料庫在市場上表現出明顯的主導地位。
將關係 (SQL) 資料庫與圖形資料庫整合可以利用這兩種模型的優勢。 SQL資料庫擅長結構化資料儲存和複雜查詢,而圖資料庫擅長管理和查詢複雜關係。將它們結合起來可以實現結構化資料的高效儲存以及關係的靈活表示和遍歷,從而為不同的資料管理需求提供全面的解決方案。這種整合有助於跨廣泛用例的無縫資料分析、見解生成和應用程式開發,從而增強整體敏捷性和可擴展性。
路徑分析
連通性分析
社區分析
中心性分析
路徑分析佔據大部分市場佔有率
根據分析類型,全球圖資料庫市場可分為路徑分析、連結性分析、社群分析和中心性分析。根據圖資料庫市場報告,路徑分析佔據了大部分市場佔有率。
圖資料庫中的路徑分析涉及遍歷節點之間的關係以識別感興趣的模式或路徑。它可以查詢和分析節點和邊的序列,以發現見解或回答有關資料的特定問題。路徑分析對於推薦系統、詐欺偵測和網路分析等任務至關重要,可以為互連資料的結構和行為提供有價值的見解。透過檢查圖表中的路徑,組織可以得出可行的見解,並根據潛在關係做出明智的決策。
本地
基於雲端
本地模式佔據大部分市場佔有率
根據部署模型,全球圖資料庫市場可分為本地圖資料庫市場和基於雲端的圖資料庫市場。報告顯示,本地模式佔據了大部分市場佔有率。
圖資料庫的本機部署涉及在組織自己的資料中心或基礎設施內安裝和管理資料庫軟體。與基於雲端的替代方案相比,這種方法可以更好地控制資料安全性、合規性和效能。對於監管要求嚴格或資料敏感的行業,首選本地部署,為資料管理和處理提供專用環境。例如,BFSI 領域的各種公司擴大在自己的資料中心內部署圖資料庫,這對圖資料庫市場前景產生了積極影響。總部位於曼哈頓的 FinTech Current's 擴大利用圖形資料庫技術為客戶建立新的金融服務,並基於個人及其家庭關係的綜合視圖創建一套「混合金融」產品。除此之外,圖形資料庫的本地部署允許組織利用現有基礎設施投資並根據其特定需求和偏好自訂部署。
詐欺偵測和風險管理
主資料管理
客戶分析
身分和存取管理
推薦引擎
隱私和風險合規
其他
根據應用程式,全球圖資料庫市場可以細分為詐欺偵測和風險管理、主資料管理、客戶分析、身分和存取管理、推薦引擎、隱私和風險合規性等。
圖資料庫廣泛應用於銀行和金融領域,以偵測和防止詐欺活動。例如,Amazon Neptune 等圖形資料庫擴大用於執行查詢,因為它們可以同時遍歷資料並執行計算。圖形表示多連接網路上的交易和各方,並發現連接模式和鏈。因此,圖資料庫廣泛用於反洗錢(AML)應用程式,因為它們可以幫助發現可疑交易的模式。除此之外,對資料合規性的需求以及知名公司擴大使用主資料管理解決方案來改善業務營運可能會推動圖資料庫市場的收入。
BFSI
零售與電子商務
資訊科技和電信
醫療保健和生命科學
政府和公共部門
媒體與娛樂
製造業
運輸與物流
其他
IT和電信業佔據最大的市場佔有率
根據垂直行業,全球圖數據庫市場已細分為 BFSI、零售和電子商務、IT 和電信、醫療保健和生命科學、政府和公共部門、媒體和娛樂、製造、運輸和物流等。報告顯示,IT和電信業佔據了最大的市場佔有率。
在IT和電信行業,圖資料庫用於網路拓撲管理、故障分析和服務發放。它們可以即時監控網路基礎設施、識別瓶頸並最佳化資源分配。圖資料庫還透過繪製客戶、服務和設備之間的複雜互動來促進客戶關係管理,從而提高服務個人化和故障排除效率。
北美洲
美國
加拿大
亞太
中國
日本
印度
韓國
澳洲
印尼
其他
歐洲
德國
法國
英國
義大利
西班牙
俄羅斯
其他
拉丁美洲
巴西
墨西哥
其他
中東和非洲
北美目前主導全球市場
市場研究報告還對所有主要區域市場進行了全面分析,其中包括北美(美國和加拿大);亞太地區(中國、日本、印度、韓國、澳洲、印尼等);歐洲(德國、法國、英國、義大利、西班牙、俄羅斯等);拉丁美洲(巴西、墨西哥等);以及中東和非洲。報告稱,北美目前在全球市場佔據主導地位。
該地區技術使用的不斷擴大是推動北美圖數據庫市場成長的主要原因之一。 IBM、微軟、Neo4j、Oracle 等圖資料庫廠商在該地區的擴張預計將進一步推動市場擴張。此外,IMARC的圖數據庫市場概況表明,主要區域經濟體研發支出的成長正在幫助北美圖數據庫市場新技術的發展。例如,2022 年 6 月,統一資料管理和治理解決方案提供商 Ataccama 在一輪成長資本投資中獲得了 1.5 億美元,這筆資金用於資助該公司開發新產品和擴大市場佔有率。
The global graph database market size reached US$ 1.7 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 7.8 Billion by 2032, exhibiting a growth rate (CAGR) of 18.3% during 2024-2032. The increasing adoption of graph databases in cybersecurity for threat detection and network analysis, growing demand for real-time analytics and AI-driven insights, and expanding application in industries, such as healthcare and finance, for data integration and personalized services, are some of the key factors catalyzing the graph database market growth.
Major Market Drivers: The rising usage of graph database solutions in different industry verticals, such as retail, information technology (IT), telecommunications, manufacturing, transportation, and banking, financial services and insurance (BFSI), represents one of the key factors propelling the market growth.
Key Market Trends: The growing adoption of artificial intelligence (AI)-based graph database tools across the world is one of the significant key trends driving the growth of the market.
Competitive Landscape: Some of the leading graph database market companies are Amazon Web Services Inc. (Amazon.com Inc.), Datastax Inc., Franz Inc., International Business Machines Corporation, Marklogic Corporation, Microsoft Corporation, Neo4j Inc., Objectivity Inc., Oracle Corporation, Stardog Union, Tibco Software Inc., and Tigergraph Inc., among others.
Geographical Trends: According to the report, North America currently dominates the global market. The expanding use of technology in the region is one of the main reasons promoting the growth of the graph database market. The expansion of graph database players across North America, such as IBM, Microsoft, Neo4j, and Oracle., is anticipated to drive market expansion further.
Challenges and Opportunities: Challenges in the graph database market include data privacy concerns, complexity in migrating from relational databases, and the need for skilled personnel. Opportunities lie in addressing evolving use cases such as fraud detection, personalized recommendation systems, and knowledge graph applications, driving innovation and market expansion.
Rising Volume and Complexity of Data
One of the primary factors driving the growth of the market is the increasing volume of data generated by numerous organizations across the world. With the advent of next-generation technologies and the proliferation of connected devices, businesses are producing vast amounts of data from various sources, including social media, customer interaction, IoT devices, transactions, and cloud computing. For instance, according to Cisco, the IoT generated approximately 507.5 zettabytes of data in 2019. A survey by the Ponemon Institute and the Shared Assessments Program also shared that at least 81% of risk oversight and corporate governance professionals believe data breaches happened by an unsecured IoT device within their company. In response to this, companies are increasingly integrating graph database solutions to drive valuable insights from the data and ensure the security and accuracy of their data by providing data cleansing, validation, and enrichment capabilities. This, in turn, is projected to fuel the graph database market demand in the coming years.
Increasing Product Offerings
Various key players are introducing a variety of graph database solutions catering to different use cases and requirements. For instance, in April 2024, Neo4j partnered with Google Cloud to launch new GraphRAG capabilities for GenAI applications. This launch will speed up generative AI application development and deployment across several crucial stages. The results solve a problem for enterprises that struggle with complexity and hallucinations when building and deploying successful GenAI applications requiring real-time, contextually rich data and accurate, explainable results. Similarly, in December 2023, Amazon Web Services (AWS) launched a new analytics database engine that combines the power of vector search and graph data. The general availability of the new service, named Amazon Neptune Analytics, was unveiled at the re-invest conference in Las Vegas. The new service is available as a pay-as-you-go model with no one-time setup fees or recurring subscriptions. It is now available in some AWS regions, including the US East, the US West, Asia Pacific, and Europe. Such innovations in graph databases are anticipated to propel the graph database market share in the coming years.
Growing Product Application across Various Industries
Graph databases are being adopted across various industries, including finance, healthcare, retail, logistics, and manufacturing, to address specific use cases and business challenges. For instance, in January 2024, the R&D arm of global pharmaceutical company Servier started to utilize graph technologies to cut drug research time and improve the success rate of drug candidates in the clinical phase. The company is using Neo4j's graph called Pegasus, which allows them to better organize and probe both third-party and proprietary data. Similarly, the escalating utilization of graph databases in the financial sector to detect and prevent fraudulent activities is also catalyzing the graph database market's recent price. For instance, graph databases such as Amazon Neptune are increasingly being used to perform queries because they can traverse the data and perform calculations simultaneously. Graphs represent transactions and parties over a multi-connected network and discover patterns and chains of connections. As a result, graph databases are extensively being used in anti-money laundering (AML) applications since they can help find patterns of suspicious transactions.
IMARC Group provides an analysis of the key trends in each sub-segment of the global graph database market report, along with forecasts at the global, regional, and country levels from 2024-2032. Our report has categorized the market based on component, type of database, analysis type, deployment model, application, and industry vertical.
Software
Services
Software represents the largest market share
Based on the component, the global graph database market can be segmented into software and services. According to the report, software represents the largest market share.
The growth of the segment can be attributed to the increasing adoption of software-as-a-service (SaaS) by numerous companies to manage their complex data. Moreover, graph database market statistics by IMARC indicate that software deployment often involves upfront licensing or subscription fees, which can be more cost-effective in the long run, especially for organizations with ongoing data management needs.
Relational (SQL)
Non-Relational (NoSQL)
Relational (SQL) database exhibits a clear dominance in the market
Based on the type of database, the global graph database market can be segmented into relational (SQL) and non-relational (NoSQL). According to the report, relational (SQL) database exhibits a clear dominance in the market.
Integrating relational (SQL) databases with graph databases allows for leveraging the strengths of both models. SQL databases excel in structured data storage and complex queries, while graph databases specialize in managing and querying complex relationships. Combining them enables efficient storage of structured data alongside flexible representation and traversal of relationships, offering a comprehensive solution for diverse data management needs. This integration facilitates seamless data analysis, insights generation, and application development across a wide range of use cases, enhancing overall agility and scalability.
Path Analysis
Connectivity Analysis
Community Analysis
Centrality Analysis
Path analysis holds the majority of the total market share
Based on the analysis type, the global graph database market can be segmented into path analysis, connectivity analysis, community analysis, and centrality analysis. According to the graph database market report, path analysis holds the majority of the total market share.
Path analysis in graph databases involves traversing the relationships between nodes to identify patterns or paths of interest. It enables querying and analyzing the sequence of nodes and edges to uncover insights or answer specific questions about the data. Path analysis is crucial for tasks like recommendation systems, fraud detection, and network analysis, offering valuable insights into the structure and behavior of interconnected data. By examining paths within the graph, organizations can derive actionable insights and make informed decisions based on the underlying relationships.
On-premises
Cloud-based
On-premises model accounts for the majority of the total market share
Based on the deployment model, the global graph database market can be segmented into on-premises and cloud-based. According to the report, on-premises model accounts for the majority of the total market share.
On-premises deployment of graph databases involves installing and managing the database software within an organization's own data center or infrastructure. This approach offers greater control over data security, compliance, and performance compared to cloud-based alternatives. On-premises deployment is preferred in industries with strict regulatory requirements or sensitive data concerns, providing a dedicated environment for data management and processing. For instance, various companies operating in the BFSI sector are increasingly deploying graph databases within their own data centers, which is positively impacting the graph database market outlook. Manhattan-based FinTech Current's is increasingly utilizing graph database technology to build new financial services for customers and creating a set of 'hybrid finance' products based on integrated views of individuals and their family connections. Besides this, on-premises deployment of graph databases allows organizations to leverage existing infrastructure investments and tailor the deployment to their specific needs and preferences.
Fraud Detection and Risk Management
Master Data Management
Customer Analytics
Identity and Access Management
Recommendation Engine
Privacy and Risk Compliance
Others
Based on the application, the global graph database market can be segmented into fraud detection and risk management, master data management, customer analytics, identity and access management, recommendation engine, privacy and risk compliance, and others.
Graph databases are widely used in the banking and financial sector to detect and prevent fraudulent activities. For instance, graph databases such as Amazon Neptune are increasingly being used to perform queries, because they can traverse the data and perform calculations simultaneously. Graphs represent transactions and parties over a multi-connected network and discover patterns and chains of connections. As a result, graph databases are extensively being used in anti-money laundering (AML) applications, since they can help find patterns of suspicious transactions. Besides this, the demand for data compliance and the growing usage of master data management solutions in prominent companies to improve business operations is likely to fuel the graph database market revenue.
BFSI
Retail and E-Commerce
IT and Telecom
Healthcare and Life Science
Government and Public Sector
Media and Entertainment
Manufacturing
Transportation and Logistics
Others
IT and telecom industry represents the largest market share
Based on the industry vertical, the global graph database market has been segmented into BFSI, retail and e-commerce, IT and telecom, healthcare and life science, government and public sector, media and entertainment, manufacturing, transportation and logistics, and others. According to the report, the IT and telecom industry represents the largest market share.
In the IT and telecom industry, graph databases are utilized for network topology management, fault analysis, and service provisioning. They enable real-time monitoring of network infrastructure, identifying bottlenecks, and optimizing resource allocation. Graph databases also facilitate customer relationship management by mapping complex interactions between customers, services, and devices, enhancing service personalization and troubleshooting efficiency.
North America
United States
Canada
Asia-Pacific
China
Japan
India
South Korea
Australia
Indonesia
Others
Europe
Germany
France
United Kingdom
Italy
Spain
Russia
Others
Latin America
Brazil
Mexico
Others
Middle East and Africa
North America currently dominates the global market
The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America currently dominates the global market.
The expanding use of technology in the region is one of the main reasons promoting the growth of the graph database market in North America. The expansion of graph database players across the region, such as IBM, Microsoft, Neo4j, Oracle, etc., is anticipated to drive market expansion further. Moreover, the graph database market overview by IMARC indicates that the growth of R&D spending by significant regional economies is helping the development of new technologies in the North America graph database market. For instance, in June 2022, Ataccama, a unified data management and governance solutions provider, secured US$150 Million in a growth capital investment round, money that was used to finance the company's efforts to develop new products and expand its market presence.
Amazon Web Services Inc. (Amazon.com Inc.)
Datastax Inc.
Franz Inc.
International Business Machines Corporation
Marklogic Corporation
Microsoft Corporation
Neo4j Inc.
Objectivity Inc.
Oracle Corporation
Stardog Union
Tibco Software Inc.
Tigergraph Inc.
(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)
March 2024: PuppyGraph, a pioneering force in graph database analysis, launched the first and only graph query engine, transforming traditional data storage into dynamic graph engines. This innovation simplifies data storage, obsoleting graph database complexities and streamlining AI integration for advanced analytics and Large Language Models (LLMs).
March 2024: Neo4j, a graph database and analytics leader, announced a collaboration with Microsoft to deliver a unified data offering that addresses customer's data need for generative AI (GenAI).
December 2023: Amazon Web Services (AWS) launched a new analytics database engine that combines the power of vector search and graph data. The general availability of the new service, named Amazon Neptune Analytics, was unveiled at the re-Invest conference in Las Vegas. The new service is available as a pay-as-you-go model with no one-time setup fees or recurring subscriptions. It is now available in some AWS regions, including the US East, the US West, Asia Pacific, and Europe.