封面
市場調查報告書
商品編碼
1609917

2025-2033 年日本人工智慧市場規模、佔有率、趨勢和預測(按類型、產品、技術、系統、最終用途產業和地區)

Japan Artificial Intelligence Market Size, Share, Trends and Forecast by Type, Offering, Technology, System, End Use Industry, and Region, 2025-2033

出版日期: | 出版商: IMARC | 英文 120 Pages | 商品交期: 5-7個工作天內

價格
簡介目錄

2024 年日本人工智慧IMARC Group規模為 66 億美元。這個市場的推動因素是越來越依賴人工智慧(AI) 驅動的聊天機器人來即時註冊和解決客戶查詢,以及擴大採用自動導引車(AGV) 來識別道路上的障礙物並檢測動態變化。

資訊和通訊 (ICT) 系統產生大量資料,為人工智慧 (AI) 演算法提供動力。日本擁有強大的ICT基礎設施,包括高速網際網路和5G網路,有利於即時資料處理和人工智慧應用的無縫整合。企業可以收集、處理和分析資料,以提高金融和醫療保健領域的準確性和功能。人工智慧用於最佳化網路效能、調整參數、預測流量模式並檢測潛在問題。 ICT 支援物聯網 (IoT),使互連設備能夠通訊和共享資料。它還提供人工智慧開發的硬體、軟體和平台。人工智慧有助於識別網路釣魚嘗試、惡意軟體和其他漏洞,以改善 ICT 系統的安全狀況。根據 IMARC 集團的報告,到 2033 年,日本資訊與通訊技術 (ICT) 市場預計將達到 5,300 億美元。

由於人工智慧,綠色技術可以增強其能力並實現更大的永續發展目標。人工智慧可以分析大型資料集並即時監控能源、水和原料等資源的使用情況。它可以識別低效率並最佳化消耗,以減少浪費並促進製造業、農業和能源生產等行業更永續的實踐。人工智慧可以實現自動分類和挑選材料以供重複使用,以改善廢棄物管理和回收流程。除此之外,人工智慧驅動的模型可以預測環境風險、氣候變遷、自然災害和污染程度。它可以提供有價值的見解,幫助減輕風險並為環境保護和氣候適應政策提供資訊。農民可以在精準農業中利用人工智慧綠色技術來最佳化水、肥料和農藥等資源的使用。 IMARC Group的報告顯示,到2032年,日本綠色技術和永續發展市場預計將達到434.2億美元。

日本人工智慧市場趨勢:

人工智慧在零售和電子商務的應用越來越多

日本的零售商和電子商務平台採用人工智慧技術來保持競爭力並簡化營運。在實體店中,支援人工智慧的互動式資訊亭和機器人可協助購物者找到產品、提出建議和結帳。人工智慧驅動的視覺搜尋和圖像識別工具允許客戶使用圖像搜尋產品。線上商店使用人工智慧驅動的聊天機器人來幫助客戶解決問題並即時解決問題。人工智慧幫助全通路零售商整合來自線上、店內和行動平台的客戶資料。它在行動支付中用於驗證交易、檢測詐欺並確保安全購買。此外,它還用於基於訂閱的零售服務,例如餐包配送和時尚盒,為訂閱者提供個人化的產品選擇。人工智慧驅動的自動化系統可加快揀選、包裝和運輸流程,確保所有零售通路快速、準確地履行訂單。根據IMARC Group的報告,預計2024年至2032年日本零售市場的成長率(CAGR)為1.40%。

自動導引車的擴展

自動導引車 (AGV) 需要先進的人工智慧演算法來導航複雜的環境。透過使用人工智慧,AGV 可以識別障礙物,檢測環境的動態變化,並做出即時決策以避免損壞。除此之外,AGV 還可用於倉庫內物料搬運、產品組裝和運輸的自動化。企業可以整合人工智慧來實現更大程度的自動化、降低人力成本並提高生產力。人工智慧技術可以最佳化多個 AGV 的協調、管理時間表、預測維護需求並提高整體車隊效率。他們可以預測 AGV 何時需要維護並避免停機。他們還可以分析 AGV 的電池電量和馬達性能資料。 IMARC Group網站公佈的資料顯示,日本自動導引車市場預計2024-2032年期間將呈現7.79%的成長率(CAGR)。

公有雲的採用率不斷上升

人工智慧在公有雲中用於自動化資源配置、負載平衡和系統最佳化。它確保高效的性能、節省成本並最大限度地減少用戶的停機時間。公共雲端供應商使企業能夠存取先進的人工智慧工具和機器學習 (ML) 模型,而無需單獨開發它們。公司可以產生見解、執行預測分析並建立自訂機器學習模型。人工智慧最大限度地減少了執行此類任務所需的實體基礎設施投資。人工智慧驅動的解決方案可以隨時回答問題、解決問題並提供協助。人工智慧驅動的自然語言處理 (NLP) 和語音辨識技術被納入公有雲平台,以開發語音啟動應用程式和虛擬助理。除此之外,公有雲供應商使用人工智慧驅動的安全功能來即時偵測和緩解威脅。 IMARC Group的報告預測,日本公有雲市場在2024-2032年期間將呈現13.05%的成長率(CAGR)。

目錄

第1章:前言

第 2 章:範圍與方法

  • 研究目的
  • 利害關係人
  • 數據來源
    • 主要來源
    • 二手資料
  • 市場預測
    • 自下而上的方法
    • 自上而下的方法
  • 預測方法

第 3 章:執行摘要

第 4 章:日本人工智慧市場 - 簡介

  • 概述
  • 市場動態
  • 產業動態
  • 競爭情報

第 5 章:日本人工智慧市場格局

  • 歷史與當前市場趨勢(2019-2024)
  • 市場預測(2025-2033)

第 6 章:日本人工智慧市場 - 細分:按類型

  • 狹義/弱人工智慧
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 通用/強人工智慧
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)

第 7 章:日本人工智慧市場 - 分拆:透過發行

  • 硬體
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 軟體
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 服務
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)

第 8 章:日本人工智慧市場 - 細分:按技術分類

  • 機器學習
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 自然語言處理
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 上下文感知計算
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 電腦視覺
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 其他
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)

第 9 章:日本人工智慧市場 - 細分:按系統分類

  • 智慧系統
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 決策支援處理
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 混合系統
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 模糊系統
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)

第 10 章:日本人工智慧市場 - 細分:按最終用途產業

  • 衛生保健
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 製造業
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 汽車
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 農業
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 零售
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 安全
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 人力資源
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 行銷
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 金融服務
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 運輸與物流
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)
  • 其他
    • 概述
    • 歷史與當前市場趨勢(2019-2024)
    • 市場預測(2025-2033)

第 11 章:日本人工智慧市場 - 競爭格局

  • 概述
  • 市場結構
  • 市場參與者定位
  • 最佳制勝策略
  • 競爭儀表板
  • 公司評估象限

第 12 章:關鍵參與者簡介

  • Company A
    • Business Overview
    • Product Portfolio
    • Business Strategies
    • SWOT Analysis
    • Major News and Events
  • Company B
    • Business Overview
    • Product Portfolio
    • Business Strategies
    • SWOT Analysis
    • Major News and Events
  • Company C
    • Business Overview
    • Product Portfolio
    • Business Strategies
    • SWOT Analysis
    • Major News and Events
  • Company D
    • Business Overview
    • Product Portfolio
    • Business Strategies
    • SWOT Analysis
    • Major News and Events
  • Company E
    • Business Overview
    • Product Portfolio
    • Business Strategies
    • SWOT Analysis
    • Major News and Events

第 13 章:日本人工智慧市場 - 產業分析

  • 促進因素、限制因素和機會
    • 概述
    • 促進要素
    • 限制
    • 機會
  • 波特五力分析
    • 概述
    • 買家的議價能力
    • 供應商的議價能力
    • 競爭程度
    • 新進入者的威脅
    • 替代品的威脅
  • 價值鏈分析

第 14 章:附錄

簡介目錄
Product Code: SR112024A9349

The Japan artificial intelligence market size was valued at USD 6.6 Billion in 2024. Looking forward, IMARC Group estimates the market to reach USD 35.2 Billion by 2033, exhibiting a CAGR of 20.4% from 2025-2033. The market is driven by the growing reliance on artificial intelligence (AI)-powered chatbots to register and resolve customer queries in real-time, along with the rising adoption of automated guided vehicles (AGVs) to recognize obstacles on roads and detect dynamic changes.

Information and communication (ICT) systems generate vast amounts of data that fuels artificial intelligence (AI) algorithms. Japan has robust ICT infrastructure with high-speed internet and 5G networks that facilitate real-time data processing and the seamless integration of AI applications. Businesses can collect, process, and analyze data to improve accuracy and functionality in finance and healthcare sectors. AI is used to optimize network performance, adjust parameters, predict traffic patterns, and detect potential issues. ICT supports the Internet of Things (IoT) that enables interconnected devices to communicate and share data. It also provides the hardware, software, and platforms for AI development. AI helps in identifying phishing attempts, malware, and other vulnerabilities to improve the security posture of ICT systems. As per the IMARC Group's report, the Japan information and communication technology (ICT) market is expected to reach USD 530 Billion by 2033.

Because of AI, green technology can enhance its capabilities and achieve greater sustainability goals. AI can analyze large datasets and monitor resource usage like energy, water, and raw materials in real time. It identifies inefficiencies and optimizes consumption to reduce waste and promote more sustainable practices across industries like manufacturing, agriculture, and energy production. AI enables automated sorting and picks materials for reuse to improve waste management and recycling processes. Besides this, AI-driven models can predict environmental risks, climate change, natural disasters, and pollution levels. It can provide valuable insights that help mitigate risks and inform policies aimed at environmental protection and climate adaptation. Farmers can utilize AI-enabled green technologies in precision farming to optimize the use of resources like water, fertilizers, and pesticides. The IMARC Group's report shows that Japan green technology and sustainability market is expected to reach USD 43.42 Billion by 2032.

Japan Artificial Intelligence Market Trends:

Increasing use of AI in retail and e-commerce

Retailers and e-commerce platforms in Japan adopt AI technologies to stay competitive and streamline their operations. In physical stores, AI-enabled interactive kiosks and robots assist shoppers to locate products, make recommendations, and check out. AI-powered visual search and image recognition tools allow customers to search for products using images. Online stores use AI-powered chatbots to assist customers with questions and resolve issues in real-time. AI helps omnichannel retailers to integrate customer data from online, in-store, and mobile platforms. It is used in mobile payments to verify transactions, detect fraud, and ensure secure purchases. In addition, it is utilized in subscription-based retail services like meal kit deliveries and fashion boxes to personalize product selection for subscribers. AI driven automated systems speed up picking, packing, and shipping processes to ensure fast and accurate fulfillment for all retail channels. According to the IMARC Group's report, Japan retail market is projected to exhibit a growth rate (CAGR) of 1.40% during 2024-2032.

Expansion of automated guided vehicles

Automated guided vehicles (AGVs) require advanced AI algorithms to navigate complex environments. By using AI, AGVs can recognize obstacles, detect dynamic changes in the environment, and make real-time decisions to avoid damage. Besides this, AGVs are used to automate material handling, product assembly, and transportation within warehouses. Businesses can integrate AI to achieve greater automation, reduce human labor costs, and increase productivity. AI technologies can optimize the coordination of multiple AGVs, manage schedules, predict maintenance needs, and improve overall fleet efficiency. They can predict when an AGV may require maintenance and avoid downtime. They can also analyze data from battery levels and motor performance of AGVs. The data published on the website of the IMARC Group shows that the Japan automated guided vehicles market is expected to exhibit a growth rate (CAGR) of 7.79% during 2024-2032.

Rising adoption of public cloud

AI is used in public clouds to automate resource provisioning, load balancing, and system optimization. It ensures efficient performance, cost savings, and minimal downtime for users. Public cloud providers enable businesses to access advanced AI tools and machine learning (ML) models without the need to develop them separately. Companies can generate insights, perform predictive analytics, and build custom ML models. AI minimizes the need to invest in physical infrastructure to perform such tasks. AI-powered solutions can answer questions, resolve issues, and provide assistance all the time. AI-powered natural language processing (NLP) and speech recognition technologies are assimilated into public cloud platforms to develop voice-activated applications and virtual assistants. Besides this, public cloud providers use AI-driven security features to detect and mitigate threats in real-time. IMARC Group's report predicted that Japan public cloud market will exhibit a growth rate (CAGR) of 13.05% during 2024-2032.

Japan Artificial Intelligence Industry Segmentation:

Analysis by Type:

Narrow/Weak Artificial Intelligence

General/Strong Artificial Intelligence

Companies in Japan employ narrow AI to automate processes, improve efficiency, and drive innovations across industries. Narrow or weak AI perform specialized tasks related to ML, image recognition, and natural language processing (NLP). These AI systems are designed to assist in robotics, autonomous vehicles, and customer services.

General or strong AI can replicate human-level cognitive abilities. Research and development (R&D) institutions and tech companies utilize general AI to perform a wide range of intellectual tasks. It holds potential for future applications in robotics, healthcare, and autonomous decision-making.

Analysis by Offering:

Hardware

Software

Services

Hardware is essential to apply AI in robotics, autonomous vehicles, and IoT devices. Because of Japan's thriving manufacturing sector and innovation in chip designs, AI hardware can support the rapid deployment of AI technologies across industries.

AI software inculcates ML frameworks, natural language processing (NLP) tools, and data analytics platforms. It is used to make smart decisions and provide operational efficiency in healthcare, automotive, and finance industries.

Japanese companies rely on AI services to customize solutions, optimize workflows, and ensure seamless deployment in services segment. Smaller firms employ AI-as-a-Service (AIaaS) to access advanced AI capabilities and remove the need to invest upfront in hardware or software.

Analysis by Technology:

Machine Learning

Natural Language Processing

Context-Aware Computing

Computer Vision

Others

Machine learning (ML) enables predictive analytics, automation, and adaptive systems across industries. Japanese companies use ML to make data-driven decisions in robotics, autonomous vehicles, and financial technology. ML enhances efficiency, optimizes supply chains, and personalizes customer experiences.

Natural language processing (NLP) is important to streamline human-computer interaction with the use of voice, text, and sentiment analysis. NLP creates multilingual and culturally contextual AI systems to deliver superior user experiences across sectors like e-commerce and tourism.

Context-aware computing uses situational data to deliver tailored AI-driven solutions. In Japan, it finds applications in smart homes, automotive systems, and wearable devices to provide personalized and adaptive services.

Computer vision offers image recognition, facial analysis, and autonomous navigation. It is employed to assist robotics, healthcare diagnostics, and surveillance. It is built with camera and imaging technologies to automate precision-oriented processes.

Analysis by System:

Intelligence Systems

Decision Support Processing

Hybrid Systems

Fuzzy Systems

Intelligence systems are critical to robotics, smart devices, and industrial automation. They enhance operational efficiency, optimize workflows, and improve customer experiences. They find applications in healthcare, automotive, and manufacturing industries.

Decision support processing uses AI systems to aid in complex decision-making using data analysis and predictive algorithms. These systems improve the accuracy and speed of decisions and support businesses to stay competitive in a data-driven economy.

Hybrid systems that combine with AI technologies can deliver comprehensive solutions. In Japan, these systems are applied in applications like autonomous vehicles, smart cities, and robotics. By using hybrid systems, Japanese companies can address complex challenges across industries and promote AI innovations.

Fuzzy systems that use approximate reasoning and imprecise data can deliver actionable insights. They are applied to control systems in appliances and vehicles in manufacturing, energy, and consumer electronic sectors.

Analysis by End Use Industry:

Healthcare

Manufacturing

Automotive

Agriculture

Retail

Security

Human Resources

Marketing

Financial Services

Transportation and Logistics

Others

In Japan, the healthcare industry uses AI to enable precise diagnostics, personalized treatments, and drug discovery. AI addresses challenges posed by Japan's aging population to improve efficiency and patient care with minimal healthcare costs.

Smart manufacturing factories leverage AI to optimize production lines, reduce downtime, and enhance efficiency. Japan utilizes AI to remain competitive, streamline supply chains, and innovate in industries, such as electronic, automotive, and industrial equipment.

Japan's automotive industry uses AI to automate driving and vehicle safety systems. Companies pioneer AI applications in self-driving cars and smart mobility solutions. AI-driven technologies improve road safety, fuel efficiency, and vehicle performance.

With challenges like labor shortages and land constraints, AI-powered drones, sensors, and analytics optimize crop yields and resource management. AI also supports sustainable farming practices to make the agriculture industry more efficient and resilient.

Retail industry uses AI to predict trends, optimize supply chains, and improve operational efficiency. AI-powered chatbots, recommendation systems, and visual search tools enhance customer engagement.

AI enhances Japan's security infrastructure through facial recognition, threat detection, and cybersecurity solutions. AI helps mitigate risks and improve responses to security challenges and builds safer environments in both digital and physical spaces.

AI can automate recruitment, evaluate performance, and engage employees to streamline human resource (HR) processes. AI-powered tools analyze resumes, predict job fit, and identify skill gaps, saving time and resources.

In marketing, AI enables Japanese companies to deliver targeted campaigns and analyze consumer behavior. AI optimizes advertising spend and enhances customer experiences by personalizing interactions.

In the financial services sector, AI-powered chatbots and robo-advisors enhance customer service and investment management. Financial institutions use AI to assess risks, enable regulatory compliance, and operational efficiency.

To optimize Japan's transportation and logistics industry, AI systems enhance efficiency, reduce costs, and minimize environmental impact. AI is important for real-time tracking and predictive maintenance to enable seamless operations in Japan's complex transportation networks.

Competitive Landscape:

Leading companies in Japan are placing bets on AI solutions for robotics, smart devices, healthcare, and cloud computing. Automotive companies are leveraging AI in autonomous vehicle development, smart mobility, and vehicle safety systems. Startups are collaborating with larger enterprises and research and development (R&D) institutions to assimilate AI applications across industries, including fintech, healthcare, and e-commerce. Companies are using AI systems to sponsor initiatives aimed at solving societal challenges like Japan's aging population and labor shortages. Additionally, governing agencies in Japan are playing an essential role by providing funding, research grants, and creating favorable policies to support AI development. Companies are also investing in home automation systems and smart home devices like robot vacuums, advanced wearables, smart kitchen appliances, and automated washing machines. For instance, in November 2024, Science Co., the leading materials company developed Mirai Ningen Sentakuki, a human washing machine that aims to enhance relaxing experience by integrating AI. Mirai is equipped with built-in sensors to monitor vital health signs and adjust the water temperature accordingly.

The report provides a comprehensive analysis of the competitive landscape in the Japan artificial intelligence market with detailed profiles of all major companies.

Latest News and Developments:

In November 2024: Prime Minister of Japan, Ishiba Shigeru announced the investment of 65 billion dollars in microchips and AI. This funding aims to enhance the domestic development of technological infrastructure, including artificial intelligence and semiconductors. The government's commitment to backing high-tech industries can drive additional investment from the private sector.

Key Questions Answered in This Report

  • 1. What is artificial intelligence?
  • 2. How big is the Japan artificial intelligence market?
  • 3. What is the expected growth rate of the Japan artificial intelligence market during 2025-2033?
  • 4. What are the key factors driving the Japan artificial intelligence market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Japan Artificial Intelligence Market - Introduction

  • 4.1 Overview
  • 4.2 Market Dynamics
  • 4.3 Industry Trends
  • 4.4 Competitive Intelligence

5 Japan Artificial Intelligence Market Landscape

  • 5.1 Historical and Current Market Trends (2019-2024)
  • 5.2 Market Forecast (2025-2033)

6 Japan Artificial Intelligence Market - Breakup by Type

  • 6.1 Narrow/Weak Artificial Intelligence
    • 6.1.1 Overview
    • 6.1.2 Historical and Current Market Trends (2019-2024)
    • 6.1.3 Market Forecast (2025-2033)
  • 6.2 General/Strong Artificial Intelligence
    • 6.2.1 Overview
    • 6.2.2 Historical and Current Market Trends (2019-2024)
    • 6.2.3 Market Forecast (2025-2033)

7 Japan Artificial Intelligence Market - Breakup by Offering

  • 7.1 Hardware
    • 7.1.1 Overview
    • 7.1.2 Historical and Current Market Trends (2019-2024)
    • 7.1.3 Market Forecast (2025-2033)
  • 7.2 Software
    • 7.2.1 Overview
    • 7.2.2 Historical and Current Market Trends (2019-2024)
    • 7.2.3 Market Forecast (2025-2033)
  • 7.3 Services
    • 7.3.1 Overview
    • 7.3.2 Historical and Current Market Trends (2019-2024)
    • 7.3.3 Market Forecast (2025-2033)

8 Japan Artificial Intelligence Market - Breakup by Technology

  • 8.1 Machine Learning
    • 8.1.1 Overview
    • 8.1.2 Historical and Current Market Trends (2019-2024)
    • 8.1.3 Market Forecast (2025-2033)
  • 8.2 Natural Language Processing
    • 8.2.1 Overview
    • 8.2.2 Historical and Current Market Trends (2019-2024)
    • 8.2.3 Market Forecast (2025-2033)
  • 8.3 Context-Aware Computing
    • 8.3.1 Overview
    • 8.3.2 Historical and Current Market Trends (2019-2024)
    • 8.3.3 Market Forecast (2025-2033)
  • 8.4 Computer Vision
    • 8.4.1 Overview
    • 8.4.2 Historical and Current Market Trends (2019-2024)
    • 8.4.3 Market Forecast (2025-2033)
  • 8.5 Others
    • 8.5.1 Overview
    • 8.5.2 Historical and Current Market Trends (2019-2024)
    • 8.5.3 Market Forecast (2025-2033)

9 Japan Artificial Intelligence Market - Breakup by System

  • 9.1 Intelligence Systems
    • 9.1.1 Overview
    • 9.1.2 Historical and Current Market Trends (2019-2024)
    • 9.1.3 Market Forecast (2025-2033)
  • 9.2 Decision Support Processing
    • 9.2.1 Overview
    • 9.2.2 Historical and Current Market Trends (2019-2024)
    • 9.2.3 Market Forecast (2025-2033)
  • 9.3 Hybrid Systems
    • 9.3.1 Overview
    • 9.3.2 Historical and Current Market Trends (2019-2024)
    • 9.3.3 Market Forecast (2025-2033)
  • 9.4 Fuzzy Systems
    • 9.4.1 Overview
    • 9.4.2 Historical and Current Market Trends (2019-2024)
    • 9.4.3 Market Forecast (2025-2033)

10 Japan Artificial Intelligence Market - Breakup by End Use Industry

  • 10.1 Healthcare
    • 10.1.1 Overview
    • 10.1.2 Historical and Current Market Trends (2019-2024)
    • 10.1.3 Market Forecast (2025-2033)
  • 10.2 Manufacturing
    • 10.2.1 Overview
    • 10.2.2 Historical and Current Market Trends (2019-2024)
    • 10.2.3 Market Forecast (2025-2033)
  • 10.3 Automotive
    • 10.3.1 Overview
    • 10.3.2 Historical and Current Market Trends (2019-2024)
    • 10.3.3 Market Forecast (2025-2033)
  • 10.4 Agriculture
    • 10.4.1 Overview
    • 10.4.2 Historical and Current Market Trends (2019-2024)
    • 10.4.3 Market Forecast (2025-2033)
  • 10.5 Retail
    • 10.5.1 Overview
    • 10.5.2 Historical and Current Market Trends (2019-2024)
    • 10.5.3 Market Forecast (2025-2033)
  • 10.6 Security
    • 10.6.1 Overview
    • 10.6.2 Historical and Current Market Trends (2019-2024)
    • 10.6.3 Market Forecast (2025-2033)
  • 10.7 Human Resources
    • 10.7.1 Overview
    • 10.7.2 Historical and Current Market Trends (2019-2024)
    • 10.7.3 Market Forecast (2025-2033)
  • 10.8 Marketing
    • 10.8.1 Overview
    • 10.8.2 Historical and Current Market Trends (2019-2024)
    • 10.8.3 Market Forecast (2025-2033)
  • 10.9 Financial Services
    • 10.9.1 Overview
    • 10.9.2 Historical and Current Market Trends (2019-2024)
    • 10.9.3 Market Forecast (2025-2033)
  • 10.10 Transportation and Logistics
    • 10.10.1 Overview
    • 10.10.2 Historical and Current Market Trends (2019-2024)
    • 10.10.3 Market Forecast (2025-2033)
  • 10.11 Others
    • 10.11.1 Overview
    • 10.11.2 Historical and Current Market Trends (2019-2024)
    • 10.11.3 Market Forecast (2025-2033)

11 Japan Artificial Intelligence Market - Competitive Landscape

  • 11.1 Overview
  • 11.2 Market Structure
  • 11.3 Market Player Positioning
  • 11.4 Top Winning Strategies
  • 11.5 Competitive Dashboard
  • 11.6 Company Evaluation Quadrant

12 Profiles of Key Players

  • 12.1 Company A
    • 12.1.1 Business Overview
    • 12.1.2 Product Portfolio
    • 12.1.3 Business Strategies
    • 12.1.4 SWOT Analysis
    • 12.1.5 Major News and Events
  • 12.2 Company B
    • 12.2.1 Business Overview
    • 12.2.2 Product Portfolio
    • 12.2.3 Business Strategies
    • 12.2.4 SWOT Analysis
    • 12.2.5 Major News and Events
  • 12.3 Company C
    • 12.3.1 Business Overview
    • 12.3.2 Product Portfolio
    • 12.3.3 Business Strategies
    • 12.3.4 SWOT Analysis
    • 12.3.5 Major News and Events
  • 12.4 Company D
    • 12.4.1 Business Overview
    • 12.4.2 Product Portfolio
    • 12.4.3 Business Strategies
    • 12.4.4 SWOT Analysis
    • 12.4.5 Major News and Events
  • 12.5 Company E
    • 12.5.1 Business Overview
    • 12.5.2 Product Portfolio
    • 12.5.3 Business Strategies
    • 12.5.4 SWOT Analysis
    • 12.5.5 Major News and Events

13 Japan Artificial Intelligence Market - Industry Analysis

  • 13.1 Drivers, Restraints, and Opportunities
    • 13.1.1 Overview
    • 13.1.2 Drivers
    • 13.1.3 Restraints
    • 13.1.4 Opportunities
  • 13.2 Porters Five Forces Analysis
    • 13.2.1 Overview
    • 13.2.2 Bargaining Power of Buyers
    • 13.2.3 Bargaining Power of Suppliers
    • 13.2.4 Degree of Competition
    • 13.2.5 Threat of New Entrants
    • 13.2.6 Threat of Substitutes
  • 13.3 Value Chain Analysis

14 Appendix