市場調查報告書
商品編碼
1642465
2025-2033 年按組件、組織規模、應用程式、最終用戶和區域分類的機器學習即服務市場報告Machine Learning as a Service Market Report by Component, Organization Size, Application, End User, and Region 2025-2033 |
2024年,全球機器學習即IMARC Group(MLaaS)市場規模達96億美元。對基於雲端的解決方案不斷成長的需求、人工智慧 (AI) 的進步、物聯網 (IoT) 設備資料的激增以及金融、醫療保健和零售等行業對預測分析的需求是推動這一趨勢的一些因素。
機器學習即服務 (MLaaS) 是一種綜合解決方案,可透過基於雲端的平台提供對機器學習功能和基礎架構的存取。它使組織能夠利用機器學習的力量,而無需在硬體、軟體和專業知識方面進行大量投資。 MLaaS 提供一系列服務、工具和資源,促進機器學習模型的開發、部署和管理。它提供了廣泛的預先建構演算法和模型,開發人員和資料科學家可以輕鬆存取和使用這些演算法和模型。
全球機器學習即服務 (MLaaS) 市場
目前,對 MLaaS 存取機器學習 (ML) 功能而不需要大量內部基礎設施和專業知識的需求不斷成長,正在推動市場的成長。除此之外,各種業務營運的自動化程度不斷提高,以提高效率和生產力並減少人工錯誤的發生,正在推動市場的成長。此外,深度學習和強化學習等機器學習演算法的不斷進步也帶來了良好的市場前景。除此之外,企業擴大使用 MLaaS 來利用尖端技術從資料中提取有價值的見解,這正在支持市場的成長。此外,為了加速業務計劃、實現更快的市場投放速度以及更快地實現投資回報 (ROI),人們越來越重視自動化,這也促進了市場的成長。
對人工智慧 (AI) 解決方案的需求不斷成長
目前,人工智慧解決方案在各行業的應用不斷增加,推動了對 MLaaS 的需求。隨著組織認知到人工智慧在最佳化流程、增強客戶體驗以及從資料中獲取可行見解的價值,對 MLaaS 解決方案的需求正在增加。企業正在利用 MLaaS 來利用機器學習演算法的強大功能,而無需在硬體和專業人才方面進行大量投資。 MLaaS 解決方案還提供企業可以輕鬆實施的預先建置機器學習模型和資料處理工具。它使中小型企業能夠使用人工智慧,使它們能夠與擁有更多內部開發人工智慧資源的大公司競爭。
雲端運算日益普及
雲端運算的日益普及極大地推動了對 MLaaS 的需求,因為它為部署機器學習模型提供了強大且可擴展的環境,使企業能夠存取尖端的 ML 功能,而無需投資昂貴的硬體或軟體。除此之外,雲端運算有助於輕鬆儲存、處理和分析大量資料,這對於機器學習至關重要。基於雲端的MLaaS解決方案可以有效地處理這些龐大的資料集,提供高速資料處理能力和即時分析,從而實現快速決策並為企業創造競爭優勢。此外,雲端平台可確保不同部門甚至不同組織之間機器學習模式和資料的輕鬆協作和無縫共享。這種輕鬆的協作有助於企業推動人工智慧驅動的數位轉型,進而提高 MLaaS 的採用率。
增加資料生成
目前,全球資料產生量不斷增加,這大大推動了對 MLaaS 的需求。隨著企業產生和收集更多資料,機器學習從中提取價值的潛力也隨之增加。 MLaaS 提供者提供現成的機器學習模型,可以根據這些資料進行訓練,以獲得有價值的見解並做出明智的業務決策。此外,海量資料集的即時分析在快節奏、數據驅動的場景中至關重要。企業需要根據可用的最新資訊快速做出決策。 MLaaS平台具備即時處理大型資料集的能力,可為企業提供即時洞察,從而提高營運效率並實現快速的資料驅動決策。
軟體
服務
服務主導市場
MLaaS 供應商提供預先建置和可自訂的機器學習模型,這簡化了機器學習技術的採用,特別是對於可能缺乏資源或專業知識來內部開發這些模型的中小型企業 (SME)。考慮到僱用熟練的資料科學家、投資強大的硬體以及維護必要的軟體的成本,內部開發和實施機器學習模型可能非常昂貴。 MLaaS 提供了一種更具成本效益的替代方案,因為它採用即用即付模式運行,允許企業只需為他們使用的內容付費。 MLaaS 供應商還提供持續的支援和維護服務,可以幫助企業克服在使用該技術時遇到的任何挑戰。這種支援可以幫助企業降低風險並確保其機器學習模型發揮最佳性能。
中小企業
大型企業
大企業佔最大市場佔有率
大型企業擴大轉向機器學習即服務(MLaaS),因為它是一種方便、可擴展且經濟高效的解決方案,用於實施高級機器學習功能,使大型企業能夠做出數據驅動的決策並獲得競爭優勢。這些企業產生的大量資料需要高效的工具來提取有意義的見解,而 MLaaS 提供了強大的機器學習模型,能夠快速有效地處理這些資訊。此外,在動態的商業環境中,大企業需要自發性地應對不斷變化的市場狀況。借助 MLaaS,他們可以利用即時分析從資料中獲取即時見解,從而增強決策流程和營運效率。這對於在快節奏環境中營運的行業(例如金融、技術和電子商務)尤其有利。
行銷和廣告
詐欺偵測和風險管理
預測分析
擴增實境和虛擬實境
自然語言處理
電腦視覺
安全與監控
其他
行銷和廣告佔市場最大佔有率
行銷和廣告業越來越需要機器學習即服務 (MLaaS),因為它有可能顯著改變其營運和客戶參與度。在這些領域,了解消費者行為和偏好至關重要,而分析大量客戶資料的能力也至關重要。 MLaaS 提供強大的機器學習模型,可以處理和分析這些資料,提供有關客戶的寶貴見解,實現個人化行銷並改善目標廣告。 MLaaS 也用於根據各種特徵對客戶進行細分,使行銷人員能夠針對特定群體自訂他們的訊息和優惠。它可以實現精確定位,從而顯著提高行銷活動的有效性。
資訊科技和電信
汽車
衛生保健
航太和國防
零售
政府
BFSI
其他
BFSI 擁有最大市場佔有率
銀行、金融服務和保險 (BFSI) 產業正在依賴機器學習即服務 (MLaaS),因為它具有簡化營運、增強客戶體驗和加強安全措施的變革潛力。 BFSI 部門處理大量資料,MLaaS 提供了一種有效的方法來處理、分析這些資料並從中得出可行的見解,使金融機構能夠做出明智的決策。 MLaaS 在 BFSI 領域的個人化客戶體驗方面發揮關鍵作用。透過分析客戶資料,機器學習模型可以識別個人行為和偏好,使金融機構能夠根據每個客戶的獨特需求量身定做服務。此外,透過利用 MLaaS,金融機構可以建立預測模型,即時提醒潛在的詐欺或風險,從而顯著增強其安全措施和客戶信任。
北美洲
美國
加拿大
亞太
中國
日本
印度
韓國
澳洲
印尼
其他
歐洲
德國
法國
英國
義大利
西班牙
俄羅斯
其他
拉丁美洲
巴西
墨西哥
其他
中東和非洲
北美表現出明顯的主導地位,佔據最大的機器學習即服務 (MLaaS) 市場佔有率
該報告還對所有主要區域市場進行了全面分析,其中包括北美(美國和加拿大);亞太地區(中國、日本、印度、韓國、澳洲、印尼等);歐洲(德國、法國、英國、義大利、西班牙、俄羅斯等);拉丁美洲(巴西、墨西哥等);以及中東和非洲。
由於越來越多的企業將人工智慧和機器學習整合到其營運中,以實現效率和可擴展性並最大限度地減少人類的參與,北美佔據了最大的市場佔有率。
另一個貢獻因素是透過各種線上管道產生的資料不斷增加。除此之外,網路威脅和資料外洩的數量不斷增加正在推動市場的成長。
由於雲端運算和邊緣運算的日益普及,亞太地區預計將在這一領域進一步擴張。除此之外,對各種業務營運自動化的日益關注正在加強市場的成長。
主要市場參與者正在投資研究業務,以改善其機器學習服務。他們還提供高效、可擴展且易於使用的尖端機器學習工具和功能。頂尖公司正在與其他科技公司、新創公司和研究機構建立策略合作夥伴關係,以提供更全面和創新的解決方案。他們還專注於提供培訓和認證計劃,以培養熟練的勞動力。領先的公司正在採取措施增強其平台的安全功能。他們正在實施更強大的資料加密,增強存取控制,並使用機器學習來偵測和回應安全威脅。
亞馬遜公司
比格姆公司
費爾艾薩克公司
谷歌有限責任公司(Alphabet Inc.)
H2O.ai公司
惠普企業開發有限公司
Iflowsoft 解決方案公司
國際商業機器公司
微軟公司
猴子學習
Sas研究所公司
約塔明分析公司
The global machine learning as a service (MLaaS) market size reached USD 9.6 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 84.1 Billion by 2033, exhibiting a growth rate (CAGR) of 25.88% during 2025-2033. The growing demand for cloud-based solutions, advancements in artificial intelligence (AI), proliferation of data from internet of things (IoT) devices, and the need for predictive analytics in industries including finance, healthcare, and retail are some of the factors propelling the market growth.
Machine learning as a service (MLaaS) is a comprehensive solution that provides access to machine learning capabilities and infrastructure through a cloud-based platform. It enables organizations to leverage the power of machine learning without the need for significant investments in hardware, software, and specialized expertise. MLaaS offers a range of services, tools, and resources that facilitate the development, deployment, and management of machine learning models. It provides a wide array of pre-built algorithms and models that can be easily accessed and utilized by developers and data scientists.
Global Machine Learning As A Service (MLaaS) Market
At present, the increasing demand for MLaaS to access machine learning (ML) capabilities without the need for extensive in-house infrastructure and expertise is impelling the growth of the market. Besides this, the rising automation of various business operations to increase efficiency and productivity and reduce the occurrence of manual errors is propelling the growth of the market. In addition, the growing advancements in ML algorithms, including deep learning and reinforcement learning, are offering a favorable market outlook. Apart from this, the increasing employment of MLaaS by businesses to leverage cutting-edge techniques to extract valuable insights from their data is supporting the growth of the market. Additionally, the rising emphasis on automation to accelerate business initiatives, achieve faster time-to-time markets, and realize quicker returns on investments (ROI) is contributing to the growth of the market.
Rising demand for artificial intelligence (AI) solutions
At present, the increasing employment of AI solutions across various industries is fueling the demand for MLaaS. As organizations recognize the value of AI in optimizing processes, enhancing customer experiences, and gaining actionable insights from data, the demand for MLaaS solutions is increasing. Businesses are leveraging MLaaS to harness the power of machine learning algorithms without the need for significant investments in hardware and specialized talent. MLaaS solutions also offer pre-built machine learning models and data handling tools which businesses can easily implement. It has made AI accessible to small and medium-sized businesses, enabling them to compete with larger companies that have more resources for developing AI in-house.
Growing popularity of cloud computing
The rising popularity of cloud computing is significantly driving the demand for MLaaS as it provides a robust and scalable environment for deploying machine learning models, enabling businesses to access cutting-edge ML capabilities without investing in expensive hardware or software. Besides this, cloud computing facilitates easy storage, processing, and analysis of large volumes of data, which are crucial for machine learning. Cloud-based MLaaS solutions can handle these vast datasets efficiently, providing high-speed data processing capabilities and real-time analytics, thereby enabling quick decision-making and creating a competitive edge for businesses. In addition, cloud platforms ensure easy collaboration and seamless sharing of machine learning models and data across different departments or even different organizations. This ease of collaboration can be instrumental in businesses to drive AI-driven digital transformation, thereby leading to increased uptake of MLaaS.
Increasing generation of data
Presently, there is an increase in data generation worldwide, which is significantly propelling the demand for MLaaS. As businesses generate and collect more data, the potential for ML to extract value from it also increases. MLaaS providers deliver ready-made machine learning models that can be trained on this data to gain valuable insights and make informed business decisions. Moreover, the real-time analysis of massive datasets is crucial in fast-paced, data-driven scenarios. Businesses need to make decisions quickly based on the latest information available. MLaaS platforms, equipped with the capability to process large datasets in real time, can provide businesses with immediate insights, thereby improving their operational efficiency and enabling swift and data-driven decision-making.
Software
Services
Services dominate the market
MLaaS providers offer pre-built and customizable machine learning models, which simplifies the adoption of machine learning technologies, especially for small and medium enterprises (SMEs) that may lack the resources or expertise to develop these models in-house. Developing and implementing machine learning models in-house can be quite expensive, considering the costs of hiring skilled data scientists, investing in robust hardware, and maintaining the necessary software. MLaaS provides a more cost-effective alternative as it operates on a pay-as-you-go model, allowing businesses to only pay for what they use. MLaaS providers also offer ongoing support and maintenance services, which can help businesses overcome any challenges they encounter when using the technology. This support can help businesses mitigate risks and ensure that their machine-learning models are performing optimally.
Small and Medium-sized Enterprises
Large Enterprises
Large enterprises hold the largest share in the market
Large enterprises are increasingly turning to machine learning as a service (MLaaS) as it is a convenient, scalable, and cost-effective solution for implementing advanced machine learning capabilities, allowing large businesses to make data-driven decisions and gain a competitive edge. The vast amount of data generated by these enterprises necessitates efficient tools to extract meaningful insights, and MLaaS offers robust machine-learning models capable of processing this information swiftly and effectively. Moreover, in a dynamic business environment, large enterprises need to respond spontaneously to changing market conditions. With MLaaS, they can leverage real-time analytics to derive immediate insights from their data, enhancing their decision-making process and operational efficiency. This is particularly beneficial for industries that operate in fast-paced environments, such as finance, technology, and e-commerce.
Marketing and Advertising
Fraud Detection and Risk Management
Predictive Analytics
Augmented and Virtual Reality
Natural Language Processing
Computer Vision
Security and Surveillance
Others
Marketing and advertising hold the biggest share in the market
Marketing and advertising industries increasingly require machine learning as a service (MLaaS) due to its potential to transform their operations and customer engagements significantly. In these fields, understanding consumer behavior and preferences is of utmost importance, and the ability to analyze vast amounts of customer data is vital. MLaaS provides robust machine learning models that can process and analyze this data, offering valuable insights about customers, enabling personalized marketing, and improving target advertising. MLaaS is also used to segment customers based on various characteristics, enabling marketers to tailor their messages and offers to specific groups. It allows for precise targeting, which can significantly enhance the effectiveness of marketing campaigns.
IT and Telecom
Automotive
Healthcare
Aerospace and Defense
Retail
Government
BFSI
Others
BFSI holds the maximum share of the market
The banking, financial services and insurance (BFSI) sector is relying on machine learning as a service (MLaaS) due to its transformative potential to streamline operations, enhance customer experiences, and bolster security measures. The BFSI sector deals with enormous amounts of data, and MLaaS provides an efficient way to process, analyze, and draw actionable insights from this data, enabling financial institutions to make informed decisions. MLaaS plays a pivotal role in personalizing customer experiences in the BFSI sector. By analyzing customer data, machine learning models can identify individual behaviors and preferences, enabling financial institutions to tailor their services to each customer's unique needs. Furthermore, by leveraging MLaaS, financial institutions can build predictive models that can alert them to potential fraud or risks in real-time, significantly enhancing their security measures and customer trust.
North America
United States
Canada
Asia-Pacific
China
Japan
India
South Korea
Australia
Indonesia
Others
Europe
Germany
France
United Kingdom
Italy
Spain
Russia
Others
Latin America
Brazil
Mexico
Others
Middle East and Africa
North America exhibits a clear dominance, accounting for the largest machine learning as a service (MLaaS) market share
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and Others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa.
North America held the biggest market share due to the rising number of businesses that are integrating AI and ML in their operations to achieve efficiency and scalability and minimize the involvement of humans.
Another contributing aspect is the rising generation of data through various online channels. Besides this, the increasing number of cyber threats and data breaches is propelling the growth of the market.
Asia Pacific is estimated to expand further in this domain due to the rising popularity of cloud computing and edge computing. Apart from this, the rising focus on automating various business operations is strengthening the growth of the market.
Key market players are investing in research operations to improve their machine-learning services. They are also providing cutting-edge machine learning tools and capabilities that are efficient, scalable, and easy to use. Top companies are entering into strategic partnerships with other tech companies, startups, and research institutions to deliver more comprehensive and innovative solutions. They are also focusing on providing training and certification programs to create a skilled workforce. Leading companies are taking initiatives to enhance the security features of their platforms. They are implementing stronger data encryption, enhancing access controls, and using machine learning to detect and respond to security threats.
Amazon.com Inc.
Bigml Inc.
Fair Isaac Corporation
Google LLC (Alphabet Inc.)
H2O.ai Inc.
Hewlett Packard Enterprise Development LP
Iflowsoft Solutions Inc.
International Business Machines Corporation
Microsoft Corporation
MonkeyLearn
Sas Institute Inc.
Yottamine Analytics Inc.