市場調查報告書
商品編碼
1536238
量子時代的機器學習與深度學習(2024):市場預測與技術評估Machine Learning and Deep Learning in the Quantum Era 2024: A Market Forecast and Technology Assessment |
機器學習 (ML) 是人工智慧市場最成熟的領域之一,其歷史可以追溯到 20 世紀 50 年代。機器學習教導機器執行特定任務並透過識別模式提供準確的結果。量子電腦的出現引發了人們對如何將量子計算的力量應用於機器學習的猜測。人們越來越認識到,量子機器學習 (QML) 可以在更快的執行時間、更高的學習效率和更高的學習能力方面改進經典機器學習。
在本報告中,我們探討了量子時代的機器學習和深度學習,確定了 QML 的機會和應用,並重點介紹了那些已經開始出現和未來可能出現的機會和應用。它還討論了 QML 技術如何發展,並包括活躍在該領域的 25 家主要公司和研究機構的概況,以及 QML 收入的 10 年預測。我們也分析了阻礙 QML 成長的因素,包括量子機器學習的成本和不成熟性、對 QML 最佳化演算法的需求,以及對如何最好地實施 QML 的更深入理解。
Machine learning (ML) is one of the most mature segments of the AI market - it dates to the 1950s. ML teaches machines to perform specific tasks and provide accurate results by identifying patterns. The advent of quantum computers has led to speculations on how the power of quantum computing can be applied to ML. A consensus is building that Quantum Machine Learning (QML) can improve classical ML in terms of faster run times, increased learning efficiencies and boosted learning capacity.
In this report, IQT Research identifies QML opportunities and applications already beginning to appear and those that we believe will emerge in the future. We also discuss how QML technology will evolve and include ten-year forecasts of QML revenues, along with profiles of 25 profiles of leading firms and research institutes active in the field. The report also analyzes the factors retarding the growth of QML such as the cost and immaturity of quantum machine learning, the need for QML-optimized algorithms and a deeper understanding of how QML is best deployed.