糾纏網路:促成技術與未來市場
市場調查報告書
商品編碼
1652132

糾纏網路:促成技術與未來市場

Entangled Networks: Enabling Technologies and Future Markets

出版日期: | 出版商: Inside Quantum Technology | 英文 | 訂單完成後即時交付

價格
簡介目錄

量子網路的定義尚不清楚。話雖如此,將其視為節點透過某種量子互連糾纏的網路是合理的。

該領域目前的許多活動可能被適當地描述為研究。長距離糾纏網路要普及還有很長的路要走。量子網路測試平台激增,主要在北美和歐洲,但其中許多都是以研究和開發為導向的。在糾纏量子網路能夠普及之前,必須開發量子中繼器。在量子中繼器問世之前,預計大部分量子網路流量將透過衛星傳輸。本報告詳細介紹了糾纏網路的現狀以及未來幾年的發展方向。

迄今為止,量子網路最顯著的應用是分散式量子運算,它包括在網路中將量子電腦連接在一起。這類似於高效能運算(HPC),它包括聯網傳統電腦以提供更強的處理能力、記憶體和儲存空間。同樣,聯網量子電腦將能夠解決比以往更大的問題。儘管當今的大部分焦點都集中在連接量子電腦的糾纏網路上,但隨著量子感測器的成熟,IQT 研究發現將糾纏網路概念擴展到量子物聯網(QIoT)具有巨大潛力。

本報告確定了糾纏網路的當前和新興機會,並涵蓋了它們面臨的諸多挑戰,包括技術挑戰、法規、標準和應用開發。

目錄

第1章 執行摘要

第2章 糾纏網路技術產品及路線圖

  • 簡介
  • 糾纏網路計算機
  • 量子通訊設備和互連
  • 量子感測器和 QIoT
  • 糾纏網路的組成部分
  • 衛星和無人機的作用
  • 量子網路產品套件
  • 量子網路軟體:下一代
  • 市場差異化因素

第3章 糾纏網路領域的當前商業活動

  • 簡介
  • ADVA Network Security(德國)
  • Aliro Quantum(美國)
  • AWS Center for Quantum Networking(美國)
  • Boeing(美國)
  • BT Group(英國)
  • Cisco Systems(美國)
  • evolutionQ(加拿大)
  • Icarus Quantum(美國)
  • Infleqtion(美國)
  • IBM(美國)
  • IonQ(美國)
  • Ki3 Photonics Technologies(加拿大)
  • levelQuantum(義大利)
  • L3Harris(美國)
  • LQUOM(日本)
  • MagiQ Technologies(美國)
  • memQ(美國)
  • NanoQT(日本)
  • Nippon Telegraph and Telephone Corporation(NTT)(日本)
  • Nu Quantum(英國)
  • Photonic(加拿大)
  • QphoX(荷蘭)
  • QTD Systems (美國)
  • Quantum Bridge(加拿大)
  • Quantum Corridor(美國)
  • Quantum Industries GmbH(奧地利)
  • Quantum Network Technologies(Qunett)(美國)
  • Quantum Optics Jena GmbHH(德國)
  • Qunnect(美國)
  • SpeQtral(新加坡)
  • Welinq(法國)

第4章 研究與試驗平台

  • 簡介
  • A*STAR Quantum Innovation Center(Q.InC)(新加坡)
  • Air Force Research Laboratory(AFRL)(美國)
  • Argonne National Laboratory(美國)
  • Brookhaven National Laboratory(BNL)(美國)
  • Center for Quantum Networks(CQN)((美國)
  • Chicago Quantum Exchange (美國)
  • DistriQ Quantum Innovation Zone(加拿大)
  • ICFO(西班牙)
  • Lawrence Berkeley National Laboratory(LBNL)(美國)
  • Max Planck Institute of Optics(德國)
  • Novum Industria(美國)
  • Numana(加拿大)
  • Q-NEXT Science Center (美國)
  • OpenQKD and Successor Testbeds
  • QIQB Center for Quantum Information and Quantum Biology(日本)
  • Quantum Communications Hub(英國)
  • Quantum Flagship(EU)
  • Saarland University(德國)
  • The University of Amherst, Massachusetts(美國)
  • The University of Geneva, Group of Applied Physics(瑞士)
  • The University of Innsbruck(奧地利)
  • The University of Science and Technology of China(中國)
  • TU Delft and QuTech (荷蘭)
  • University of Maryland(美國)
  • University of Oxford(英國)
  • Wisconsin Quantum Institute(美國)

第5章 糾纏網路產品市場

  • 國內市場的影響
    • 美國的量子網路
    • 歐洲的量子網路
    • 亞洲的量子網路
  • 國際市場與技術
  • 目標應用
    • 分散式量子計算
    • 通信和 QKD
    • 感測器和測量
    • 研究與學術界的複雜網路
    • 其他

第6章 糾纏網路的10年預測

關於分析師

簡介目錄
Product Code: IQT-ENET-0225

The Quantum Internet remains ill defined. Nevertheless, it is reasonable to assume that it is a network where the nodes are entangled with connectivity over some kind of quantum interconnect. With this in mind, IQT Research is publishing this report which identifies the current and emerging opportunities for Entangled Networks. Our report also provides coverage of the many challenges faced by entangled networks including technical issues, regulations, standards and applications development.

The report is partly based on a survey of major influencers in this space as well as a review of recent technical and relevant business literature. The final chapter of this report comprises a ten-year forecast of deployment and revenue generation by entangled networks by (1) types of attached equipment, (2) media and (3) reach.

Much of the current activity in this space might be reasonably designated as research. We still have a long way to go before long-haul entangled networks become common. There are a growing number of quantum network testbeds, especially in North America and Europe, but again much of the activity - the applications in testbeds - are R&D oriented. Before entangled quantum networks become ubiquitous, quantum repeaters will need to be developed. Until quantum repeaters are commercialized, we anticipate that a lot of Quantum Internet traffic will be carried over satellites. This report goes into detail about where the Entangled Network is today and what it will become over the next few years.

For now, the most noteworthy target application of quantum networks is distributed quantum computing, the networking together of quantum computers. A parallel can be drawn here with high performance computing (HPC), which networks classical computers together to increase the available processing power, memory, and storage. Similarly, networking quantum computers together will enable larger problems to be tackled than would otherwise be the case. While the focus today is on entangled networks that connect quantum computers, IQT research believes that there is much potential to extend the Entangled Network concept to a Quantum Internet of Things (QIoT) as quantum sensors mature.

Table of Contents

Chapter One: Executive Summary

  • 1.1. Preamble
  • 1.2. Timeframe for Entangled Networks: The Importance of Quantum Repeaters
  • 1.3. Target Applications for the Entangled Network
    • 1.3.1. Distributed Quantum Computing
    • 1.3.2. Sensors and Metrology
    • 1.3.3. Entangled Networks in Research and Academia
    • 1.3.4. Other Applications
  • 1.4. Timeframe for Entangled Networks: Protocols are also Critical
  • 1.5. Components for Entangled Quantum Networks
  • 1.6. Challenges on the Way to the Entangled Network

Chapter Two: Products and Roadmaps for Entangled Networks Technologies

  • 2.1. Introduction
  • 2.2. Computers in the Entangled Network
    • 2.2.1. The Quantum Network is the Quantum Computer
    • 2.2.2. The Size of the Distributed Quantum Computing Opportunity
    • 2.2.3. Types of Quantum Computer Networks: Workgroups, Metro and Long-Haul
  • 2.3. Quantum Communications Equipment and Interconnects
    • 2.3.1. Quantum Repeaters
    • 2.3.2. Entangled QKD
  • 2.4. Quantum Sensors and the QIoT
    • 2.4.1. Quantum Clock and CSAC Networks
    • 2.4.2. Other Quantum Sensor Networks
  • 2.5. Components of the Entangled Quantum Network
    • 2.5.1. Quantum Interconnects
    • 2.5.2. Quantum Memories
    • 2.5.3. Photonic Sources for Quantum Networks
    • 2.5.4. Detectors and other Components
  • 2.6. The Role of Satellites and Drones
  • 2.7. Quantum Network Product Suites
  • 2.8. Quantum Internet Software: The Next Generation
    • 2.8.1. Protocols for the Coming Entangled Network
  • 2.9. Market Differentiators

Chapter Three: Current Commercial Activity in the Entangled Networks Space

  • 3.1. Introduction
  • 3.2. ADVA Network Security (Germany)
  • 3.3. Aliro Quantum (United States)
  • 3.4. AWS Center for Quantum Networking (CQN) (United States)
  • 3.5. Boeing (United States)
  • 3.6. BT Group (United Kingdom)
  • 3.7. Cisco Systems (United States)
  • 3.8. evolutionQ (Canada)
  • 3.9. Icarus Quantum (United States)
  • 3.10. Infleqtion (United States)
  • 3.11. IBM (United States)
  • 3.12. IonQ (United States)
  • 3.13. Ki3 Photonics Technologies (Canada)
  • 3.14. levelQuantum (Italy)
  • 3.15. L3Harris (United States)
  • 3.16. LQUOM (Japan)
  • 3.17. MagiQ Technologies (United States)
  • 3.18. memQ (United States)
  • 3.19. NanoQT (Japan)
  • 3.20. Nippon Telegraph and Telephone Corporation (NTT) (Japan)
  • 3.21. Nu Quantum (United Kingdom)
  • 3.22. Photonic (Canada)
  • 3.23. QphoX (The Netherlands)
  • 3.24. QTD Systems (United States)
  • 3.25. Quantum Bridge (Canada)
  • 3.26. Quantum Corridor (United States)
  • 3.27. Quantum Industries GmbH (Austria)
  • 3.28. Quantum Network Technologies (Qunett) (United States)
  • 3.29. Quantum Optics Jena GmbH (Germany)
  • 3.30. Qunnect (United States)
  • 3.31. SpeQtral (Singapore)
  • 3.32. Welinq (France)

Chapter Four: Research and Testbeds

  • 4.1. Introduction
  • 4.2. A*STAR Quantum Innovation Center (Q.InC) (Singapore)
  • 4.3. Air Force Research Laboratory (AFRL) (United States)
  • 4.4. Argonne National Laboratory (United States)
  • 4.5. Brookhaven National Laboratory (BNL) (United States)
  • 4.6. Center for Quantum Networks (CQN) (United States)
  • 4.7. Chicago Quantum Exchange (United States)
  • 4.8. DistriQ Quantum Innovation Zone (Canada)
  • 4.9. ICFO (Spain)
  • 4.10. Lawrence Berkeley National Laboratory (LBNL) (United States)
  • 4.11. Max Planck Institute of Optics (Germany)
  • 4.12. Novum Industria (United States)
  • 4.13. Numana (Canada)
  • 4.14. Q-NEXT Science Center (United States)
  • 4.15. OpenQKD and Successor Testbeds
  • 4.16. QIQB Center for Quantum Information and Quantum Biology (Japan)
  • 4.17. Quantum Communications Hub (United Kingdom)
  • 4.18. Quantum Flagship (EU)
  • 4.19. Saarland University (Germany)
  • 4.20. The University of Amherst, Massachusetts (United States)
  • 4.21. The University of Geneva, Group of Applied Physics (GAP) (Switzerland)
  • 4.22. The University of Innsbruck (Austria)
  • 4.23. The University of Science and Technology of China (USTC) (China)
  • 4.24. TU Delft and QuTech (The Netherlands)
  • 4.25. University of Maryland (UMD) (United States)
  • 4.26. University of Oxford (United Kingdom)
  • 4.27. Wisconsin Quantum Institute (WQI) (United States)

Chapter Five: Markets for Entangled Networking Products

  • 5.1. Impact of National Markets
    • 5.1.1. Quantum Networking in the U.S.
    • 5.1.2. Quantum Networking in Europe
    • 5.1.3. Quantum Networking in Asia
  • 5.2. International Markets and Technology
  • 5.3. Target Applications
    • 5.3.1. Distributed Quantum Computing
    • 5.3.2. Communication and QKD
    • 5.3.3. Sensors and Metrology
    • 5.3.4. Entangled Networks in Research and Academia
    • 5.3.5. Other Applications

Chapter Six: Ten-Year Forecasts of Entangled Networks

  • 6.1. Forecast Methodology and What We Forecast in this Report
  • 6.2. Ten-Year Forecasts of Entangled Networks by Type of Equipment on the Network
  • 6.3. Breakout of Entangled Quantum Networks by Reach and Technology
  • 6.4. Breakout of Entangled Quantum Networks by Transmission Type

About the Analysts

List of Exhibits

  • Exhibit 2-1: Selected Research on Quantum Repeaters
  • Exhibit 2-2: Proposed Testbed Interconnection Approaches in OpenQKD
  • Exhibit 5-1: Organizations Involved In Entangled Networks in the U.S.
  • Exhibit 6-1: Ten-year forecasts of Equipment Attached to Entangled Networks
  • Exhibit 6-2: Ten-year Forecasts of Equipment Attached to Entangled Networks by Reach ($ Millions)
  • Exhibit 6-3: Ten-Year Forecasts by Transmission Type (Satellite, Fiber and Terrestrial Freespace) ($ Millions)