市場調查報告書
商品編碼
1466086
藥物發現中的人工智慧市場:按產品、技術、流程、應用、治療領域和最終用戶分類 - 2024-2030 年全球預測Artificial Intelligence in Drug Discovery Market by Offering (Services, Software), Technology (Context-Aware Processing, Machine Learning, Natural Language Processing), Process, Application, Therapeutic Area, End User - Global Forecast 2024-2030 |
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
人工智慧在藥物發現市場規模預計2023年為10.8億美元,2024年達到13.5億美元,預計2030年將達到58.1億美元,複合年成長率為27.10%。
藥物發現中的人工智慧是指機器學習演算法和人工智慧系統在發現、設計和最佳化新藥物化合物過程中的應用。這些人工智慧模型將在簡化傳統上複雜且耗時的藥物發現過程中發揮至關重要的作用,推動醫學領域的進步。推動市場成長的因素是全球慢性病負擔日益加重,以及生物製藥公司擴大採用人工智慧來提高藥物發現的準確性、速度和有效性。此外,管理臨床前研究期間產生的大量資料的需求不斷成長也推動了市場的成長。醫療保健領域對技能熟練的人工智慧專業人員的需求以及與人工智慧實施相關的高成本正在影響成長的極限。資料集的可用性有限是限制人工智慧在藥物發現領域發展的關鍵挑戰。新藥發現機制和個人化醫療相關領域存在商機。快速發展的人工智慧藥物開發研究領域的技術進步為增強藥物發現、疾病理解和患者特異性治療創造了潛力。
主要市場統計 | |
---|---|
基準年[2023] | 10.8億美元 |
預測年份 [2024] | 13.5億美元 |
預測年份 [2030] | 58.1億美元 |
複合年成長率(%) | 27.10% |
所提供的人工智慧軟體為藥物發現提案了革命性的方法
在藥物發現領域,人工智慧 (AI) 提供了廣泛的服務,可以加快流程、提高精確度並最終改善結果。這些服務主要包括結構分析、藥物重新定位和動態建模。人工智慧軟體推動了藥物發現的數位革命。由於將人工智慧融入藥物發現,出現了各種軟體解決方案。這些軟體包括預測分析、分子對接、精準醫學以及建模和分析軟體,可加速患者與最有效藥物的匹配。
技術:擴大情境感知處理在個人化治療的採用
人工智慧演算法交叉引用遺傳資料、生物標記和疾病指標,以提案潛在的藥物標靶和量身定做的治療方法。機器學習也是人工智慧的一個分支,它透過預測化合物特性和患者反應以及增強藥物設計來促進非編程和智慧決策。另一方面,自然語言處理利用人類語言的力量進行資料挖掘,吸收學術來源的資訊以增強資料的整體性。情境處理提供個人化的治療方法提案,機器學習推動藥物設計的最佳化。相反,自然語言處理利用大型資料集來識別新藥和疾病之間的關聯。這些技術不是孤立地發揮作用,而是具有融合的潛力,為準確、快速的藥物發現提供了希望。
透過過程計算和預測能力顯著增強藥物發現過程
在藥物發現領域的人工智慧 (AI) 領域,候選藥物的選擇和檢驗是穩健評估有前途的候選藥物的潛在成功的關鍵步驟。人工智慧演算法分析分子結構,預測其效果,並確定其可行性。下一步涉及識別和優先考慮命中,並從人工智慧篩檢上準備一份有前途的候選藥物清單。根據效力、選擇性和安全性對這些命中進行優先排序。在命中識別之後,命中到先導化合物識別或先導生成階段的重點是將“命中”轉化為“先導化合物”,即可以進一步最佳化的潛在候選藥物。在這裡,人工智慧透過測試和最佳化化合物來幫助藥物化學家評估和最佳化先導化合物。下一步是先導化合物最佳化,增強潛在的候選藥物以提高活性、特異性和安全性。這個階段需要先進的人工智慧技術來預測潛在的副作用和提高藥物療效的方法。藥物發現過程還涉及標靶識別和選擇,其中涉及藥物緩解疾病標靶的選擇。最後一步是標靶檢驗,檢驗所選標靶在疾病進展中的作用及其受藥物調節的潛力。人工智慧透過計算和預測能力增強每一步,繼續徹底改變藥物發現。人工智慧大大提高了藥物發現的效率,增加了將救命藥物更快推向市場的可能性。
應用人工智慧設計的小分子藥物在人體臨床試驗中的使用正在擴大。
生技藥品中的分子標靶藥物正在利用人工智慧進行更快、更準確的最佳化,AlphaFold 已經展示了顯著的蛋白質預測能力,可以加速藥物發現。人工智慧演算法透過更準確地破解模式來增強疾病識別和評估,從而實現早期療育。藥物開發中的安全性、毒性和合規性檢查利用人工智慧來預測毒性、提高安全性並降低成本。在 COVID-19 中,高效的疫苗設計和最佳化至關重要,人工智慧驅動的病毒致病區域識別將有助於這一過程。因此,人工智慧對於製藥創新至關重要,有助於識別疾病、設計治療方法並確保安全合規。
治療領域:在個人化癌症治療的藥物發現中更多地採用人工智慧。
人工智慧 (AI) 正在成為心血管疾病管理領域的變革性工具,從早期檢測到個人化藥物製造。人工智慧應用擴大用於免疫腫瘤學,以幫助分類和預測治療反應。公司和研究機構正在利用人工智慧徹底改變對從糖尿病到肥胖等代謝疾病的理解和治療。人工智慧在幫助診斷和開發神經退化性疾病治療方法方面的潛力已得到整個領域的認可。
最終用戶:製藥和生物技術公司更多地使用人工智慧來加速藥物發現過程
委外研發機構(CRO) 正在利用人工智慧顯著增強藥物發現服務並提供高品質、高效的結果。從事人工智慧藥物發現的 CRO 通常更喜歡旨在簡化工作流程、加快藥物發現速度並最大限度地減少人為錯誤的解決方案。製藥和生物技術公司是藥物發現背後的驅動力,它們對人工智慧表現出了相當大的親和性。人工智慧正在透過加快藥物發現過程、預測藥物反應以及降低與藥物失敗相關的成本來幫助這些產業。
研究中心、學術和政府機構擴大利用人工智慧在藥物發現中的潛力。這裡的偏好在於人工智慧能夠預測潛在的候選藥物,最大限度地減少試驗的案例,並吸收大量資料進行精確研究。雖然人工智慧的使用程度會根據最終用戶的不同而有所不同,但其正面影響是不可否認的。人工智慧透過其準確性、速度和成本效益徹底改變藥物發現的潛力正在得到整個領域的日益認可。
區域洞察
美國處於將人工智慧融入藥物發現的前沿,擁有充滿活力的Start-Ups環境和強大的政府資助。加拿大也響應了這項奉獻精神,對人工智慧主導的藥物發現平台進行了大量投資。在學術機構和製藥業之間的戰略合作的推動下,英國、法國和德國等歐洲國家正在利用人工智慧和資料科學徹底改變藥物發現程序。以中國、日本和印度為首的亞太地區提供了引人注目的動力。中國大規模的人工智慧投資,加上日本出色的藥物研究,正在推動人工智慧在藥物發現的應用。在印度,政府的支持和不斷發展的 IT 部門正在推動人工智慧在藥物發現領域的發展。美國、中國和歐盟在與人工智慧藥物發現相關的專利申請方面處於領先地位,代表了各自製藥業的持續創新。
FPNV定位矩陣
FPNV定位矩陣對於評估藥物發現市場中的人工智慧至關重要。我們檢視與業務策略和產品滿意度相關的關鍵指標,以對供應商進行全面評估。這種深入的分析使用戶能夠根據自己的要求做出明智的決策。根據評估,供應商被分為四個成功程度不同的像限:前沿(F)、探路者(P)、利基(N)和重要(V)。
市場佔有率分析
市場佔有率分析是一種綜合工具,可以對藥物發現市場中的人工智慧供應商的現狀進行深入而深入的研究。全面比較和分析供應商在整體收益、基本客群和其他關鍵指標方面的貢獻,以便更好地了解公司的績效及其在爭奪市場佔有率時面臨的挑戰。此外,該分析還提供了對該行業競爭特徵的寶貴見解,包括在研究基準年觀察到的累積、分散主導地位和合併特徵等因素。這種詳細程度的提高使供應商能夠做出更明智的決策並制定有效的策略,從而在市場上獲得競爭優勢。
1. 市場滲透率:提供有關主要企業所服務的市場的全面資訊。
2. 市場開拓:我們深入研究利潤豐厚的新興市場,並分析其在成熟細分市場的滲透率。
3. 市場多元化:提供有關新產品發布、開拓地區、最新發展和投資的詳細資訊。
4.競爭評估與資訊:對主要企業的市場佔有率、策略、產品、認證、監管狀況、專利狀況、製造能力等進行全面評估。
5. 產品開發與創新:提供對未來技術、研發活動和突破性產品開發的見解。
1. 人工智慧在藥物發現領域的市場規模和預測是多少?
2.在藥物發現市場的人工智慧預測期內,有哪些產品、細分市場、應用和領域需要考慮投資?
3. 人工智慧市場在藥物發現的技術趨勢和法規結構是什麼?
4.人工智慧藥物發現市場主要供應商的市場佔有率是多少?
5.藥物發現領域進入人工智慧市場的合適型態和策略手段是什麼?
[196 Pages Report] The Artificial Intelligence in Drug Discovery Market size was estimated at USD 1.08 billion in 2023 and expected to reach USD 1.35 billion in 2024, at a CAGR 27.10% to reach USD 5.81 billion by 2030.
Artificial Intelligence in drug discovery refers to the application of machine learning algorithms and AI systems in the process of discovering, designing, and optimizing new drug compounds. These AI models play a pivotal role in streamlining the traditionally complex and time-consuming drug discovery process, thus facilitating advancements in the field of medicine. The market growth is propelled by the growing burden of chronic diseases worldwide and the rising adoption of AI across biopharmaceutical companies for heightened precision, speed, and effectiveness in drug discovery. Moreover, the increasing need to manage the large data generated during preclinical studies drives market growth. The need for more skilled AI professionals in healthcare and the high costs associated with implementing AI is influencing growth limitation. The limited availability of data sets is a pivotal challenge curtailing the growth of AI in drug discovery. The opportunities are poised in fields related to novel drug discovery mechanisms and personalized medicine. Technological advancement in the burgeoning areas of AI research for drug development creates a potentiality for enhanced drug discovery, disease understanding, and patient-specific treatments.
KEY MARKET STATISTICS | |
---|---|
Base Year [2023] | USD 1.08 billion |
Estimated Year [2024] | USD 1.35 billion |
Forecast Year [2030] | USD 5.81 billion |
CAGR (%) | 27.10% |
Offering: AI Software propose a revolutionary approach to drug discovery
Within the field of drug discovery, Artificial Intelligence (AI) offers a robust range of services that expedite the process, enhance accuracy, and ultimately improve outcomes. These services majorly include structural analysis, drug repositioning, and pharmacodynamics modeling. AI software has catalyzed a digital revolution in drug discovery. Distinct software solutions have surfaced as a product of integrating AI into drug discovery. These software include predictive analytics, molecular docking, precision medicine, and modeling and analysis software to speed up matching a patient to the most effective.
Technology: Growing adoption of context-aware processing in personalized therapeutic
Context-aware processing is personalized, with AI algorithms cross-referencing genetic data, biomarkers, and disease indicators to suggest potential drug targets or bespoke treatments. Machine learning, another AI subfield, facilitates intelligent, unprogrammed decisions, predicting compound traits, patient reactions, and enhancing drug design. Natural language processing, meanwhile, harnesses the power of human language for data mining, assimilating information from academic sources to fortify data inclusivity. Context-aware processing offers personalized therapeutic recommendations, whereas machine learning drives the optimization of drug design. Conversely, natural language processing leverages large datasets to identify novel drug-disease associations. Rather than working in isolation, these technologies have convergent potentials, promising precise, expedited drug discovery.
Process: Significant augmentation in the drug discovery process with computational prowess and predictive capabilities
In the Artificial Intelligence (AI) world in drug discovery, candidate selection and validation is a crucial step in robustly assessing the potential success of prospective drug candidates. AI algorithms analyze molecular structures, predict their effect, and determine their viability. The next step involves hit identification and prioritization, prepping a list of promising drug candidates derived from AI screening. These hits are prioritized based on potency, selectivity, and safety. Following hit identification, the hit-to-lead identification or lead generation stage focuses on transforming the 'hits' into 'leads,' i.e., potential drug candidates that can be further optimized. Here, AI helps to evaluate and optimize leads with medicinal chemists testing and optimizing compounds. The next segment represents lead optimization, where potential drug candidates are enhanced for improved activity, specificity, and safety. This stage necessitates advanced AI technology to predict potential side effects and methodology to enhance drug efficacy. The drug discovery process also encompasses target identification and selection, which involves the choice of disease-modifying targets for the drug. The final stage is target validation, which verifies the selected target's role in the progression of the disease and its potential to be modulated by a drug. Artificial Intelligence continues revolutionizing drug discovery by augmenting each step with computational power and predictive capabilities. It significantly enhances drug discovery's efficiency and potential to deliver life-saving drugs to the market faster.
Application: Growing usage of AI-designed small molecule drugs for human clinical trials.
Biologics molecular-targeted drugs leverage AI for speedier and more accurate optimization, with AlphaFold demonstrating considerable protein prediction capabilities, expediting drug discovery. AI algorithms enhance disease identification and assessment by decoding patterns more accurately, allowing earlier interventions. Safety, toxicity, and compliance checks during drug development leverage AI to foresee toxicities, augmenting safety and decreasing costs/ Small molecule drug discovery, usually time-consuming, is being revolutionized by AI. Amidst COVID-19, efficient vaccine design and optimization are critical and facilitated by AI-enabled identification of viral pathogenic regions. Thus, AI is pivotal for pharmaceutical innovations, aiding in identifying diseases, designing therapeutics, and ensuring safety compliance.
Therapeutic Area: Rising adoption of AI in the drug discovery for personalized cancer treatment.
Artificial intelligence(AI) has been emerging as a transformative tool in cardiovascular disease management, ranging from early detection to personalized medication production. AI applications are seeing increased use in immuno-oncology, where they help classify and predict treatment responses. Companies and researchers are using AI to revolutionize the understanding and treatment of metabolic diseases, from diabetes to obesity. AI's potential to aid in diagnosing and developing treatments for neurodegenerative diseases has been recognized across the sector.
End User: Increasing use of AI in the drug discovery by pharmaceutical and biotechnology companies to accelerate their drug discovery process
Contract research organizations(CROs) leverage AI to significantly augment their drug discovery services, offering high-quality and efficient outcomes. CROs dealing with AI-powered drug discovery generally prefer solutions designed to streamline their workflow, accelerate the speed of discovery, and minimize human errors. Pharmaceutical and biotechnology companies, leading drug discovery drivers, show considerable affinity towards AI. AI facilitates these industries in expediting the drug discovery process, predicting drug response, and reducing costs associated with drug failure.
Research centers and academic & government institutes are increasingly capitalizing on AI's potential in drug discovery. The preference here lies in AI's power to predict potential drug candidates, minimize trial and error instances, and absorb vast data for precise research. Although the degree of AI utilization varies among end users, its positive impact is unmistakable. AI's potential to revolutionize drug discovery through its precision, speed, and cost-effectiveness is increasingly recognized across the field.
Regional Insights
The U.S. stands at the forefront of integrating AI into drug discoveries, fuelled by an active start-up environment and robust governmental funding. Canada echoes this dedication with considerable investment in AI-driven discovery platforms. European countries, such as the UK, France, and Germany, are leveraging AI and data science to revolutionize drug discovery procedures, attributed to strategic collaboration between academic institutions and the pharmaceutical industry. With China, Japan, and India at the helm, Asia-Pacific offers compelling dynamics. China's massive AI investment, paired with Japan's excellence in pharmaceutical research, is fostering the adoption of AI in drug discovery. In India, governmental support and an expanding IT sector are moving towards AI in drug discoveries. The U.S., China, and EU lead in patent claims for AI drug discoveries, representing consistent innovation in their pharmaceutical industries.
FPNV Positioning Matrix
The FPNV Positioning Matrix is pivotal in evaluating the Artificial Intelligence in Drug Discovery Market. It offers a comprehensive assessment of vendors, examining key metrics related to Business Strategy and Product Satisfaction. This in-depth analysis empowers users to make well-informed decisions aligned with their requirements. Based on the evaluation, the vendors are then categorized into four distinct quadrants representing varying levels of success: Forefront (F), Pathfinder (P), Niche (N), or Vital (V).
Market Share Analysis
The Market Share Analysis is a comprehensive tool that provides an insightful and in-depth examination of the current state of vendors in the Artificial Intelligence in Drug Discovery Market. By meticulously comparing and analyzing vendor contributions in terms of overall revenue, customer base, and other key metrics, we can offer companies a greater understanding of their performance and the challenges they face when competing for market share. Additionally, this analysis provides valuable insights into the competitive nature of the sector, including factors such as accumulation, fragmentation dominance, and amalgamation traits observed over the base year period studied. With this expanded level of detail, vendors can make more informed decisions and devise effective strategies to gain a competitive edge in the market.
Key Company Profiles
The report delves into recent significant developments in the Artificial Intelligence in Drug Discovery Market, highlighting leading vendors and their innovative profiles. These include Aria Pharmaceuticals, Inc., Atomwise, Inc., BenevolentAI Limited, BenevolentAI SA, BioSymetrics Inc., BPGbio Inc., Butterfly Network, Inc., Cloud Pharmaceuticals, Inc., Cyclica Inc., Deargen Inc., Deep Genomics Incorporated, Envisagenics, Inc., Euretos Services BV, Exscientia PLC, Insilico Medicine, Insitro, Inc., International Business Machines Corporation, InveniAI LLC, Microsoft Corporation, Novartis AG, NVIDIA Corporation, Oracle Corporation, Owkin, Inc., Verge Genomics Inc., and XtalPi Inc..
Market Segmentation & Coverage
1. Market Penetration: It presents comprehensive information on the market provided by key players.
2. Market Development: It delves deep into lucrative emerging markets and analyzes the penetration across mature market segments.
3. Market Diversification: It provides detailed information on new product launches, untapped geographic regions, recent developments, and investments.
4. Competitive Assessment & Intelligence: It conducts an exhaustive assessment of market shares, strategies, products, certifications, regulatory approvals, patent landscape, and manufacturing capabilities of the leading players.
5. Product Development & Innovation: It offers intelligent insights on future technologies, R&D activities, and breakthrough product developments.
1. What is the market size and forecast of the Artificial Intelligence in Drug Discovery Market?
2. Which products, segments, applications, and areas should one consider investing in over the forecast period in the Artificial Intelligence in Drug Discovery Market?
3. What are the technology trends and regulatory frameworks in the Artificial Intelligence in Drug Discovery Market?
4. What is the market share of the leading vendors in the Artificial Intelligence in Drug Discovery Market?
5. Which modes and strategic moves are suitable for entering the Artificial Intelligence in Drug Discovery Market?