封面
市場調查報告書
商品編碼
1627538

分子交換器市場:治療標的,醫藥品開發,藥物輸送機制,各適應症用途:2025年

Molecular Switches As Therapeutic Targets, Drug Development, Drug Delivery Mechanism & Application By Indications Insight 2025

出版日期: | 出版商: KuicK Research | 英文 150 Pages | 商品交期: 最快1-2個工作天內

價格

分子開關是動態實體,可以回應特定的環境或生物觸發因素在不同狀態之間轉換。這些觸發因素包括 pH 值、光照射、溫度、氧化還原條件以及某些離子和生物分子的存在的變化。分子開關的概念為高度控制的診斷和治療系統提供了基礎,對醫療和製藥領域產生了重大影響。精確控制生物反應的能力使得分子開關對於先進藥物輸送系統、即時診斷工具和個人化治療介入的開發至關重要。

在製藥領域,分子開關透過精確時空控制活性藥物成分的釋放,徹底改變了藥物傳遞。 pH敏感分子開關已用於基於奈米顆粒的藥物載體,其在正常生理條件下保持穩定,但在酸性環境中降解以釋放有效負載。例如,FPBC@SN 奈米顆粒系統整合了一個針對乳癌細胞酸性細胞質的 pH 敏感分子開關。此系統釋放索拉非尼(誘導鐵死亡)和 IDO 抑制劑(增強腫瘤免疫力)。透過利用此類開關,這些系統可以減少脫靶效應,提高治療指數,並解決腫瘤學中的重要課題。

本報告提供全球分子交換器市場相關調查,市場概要,以及分子交換器治療目標的重要性,各市場區隔趨勢,新興技術與今後預測等資訊。

目錄

第1章 分子交換器的簡介

第2章 分子交換器的醫學的意義

第3章 藥物輸送和放出的分子交換器的重要性

  • 概要
  • 進行中的研究開發

第4章 分子交換器治療目標的重要性

第5章 分子交換器- 大分類

第6章 分子交換器,癌症各適應症

  • 乳癌
  • 前列腺癌症
  • 大腸癌症
  • 肺癌症
  • 胃癌

第7章 分子交換器,神經各疾病

  • 帕金森氏症
  • 阿茲海默症
  • 多發性硬化症

第8章 分子交換器,感染疾病

  • 病毒感染
  • 細菌感染

第9章 分子交換器,自體免疫疾病和發炎性各疾病

  • 糖尿病
  • 關節炎
  • 狼瘡
  • 乾癬

第10章 分子交換器,各心血管疾病

  • 心肌梗塞(心臟病發作)
  • 其他

第11章 再生醫療的分子交換器的重要性

第12章 把分子交換器作為標的主要醫藥品的銷售趨勢

第13章 醫藥品處方的分子交換器

  • 智慧型藥物配方與分子開關
  • 基於生物材料的藥物傳輸系統
  • 自我調節藥物系統

第14章 目前趨勢與新興技術

  • 奈米醫學中的分子開關
  • 響應性藥物系統的創新
  • 與人工智慧和機器學習集成

第15章 未來展望與方向性

  • 分子開關技術的進展
  • 使用分子開關的個人化醫療的未來
  • 對藥物發現與治療的潛在影響

Molecular Switches As Therapeutic Targets, Drug Development, Drug Delivery Mechanism & Application By Indications Insight 2025 Research Insights:

  • Top 20 Drugs Sales Targeting Molecular Switches: 2022 - 2024
  • Molecular Switches Significance In Regenerative Medicine & Nanomedicine
  • Molecular Switches Significance In Drug Delivery & Release
  • Molecular Switches Significance As Therapeutic Targets
  • Molecular Switches In Cancer Therapeutics: Breast Cancer, Prostate Cancer, Lung Cancer, Colorectal Cancer, Gastric Cancer
  • Molecular Switches In Neurological Disorder: Parkinson's Disease, Alzheimer's Disease, Multiple Sclerosis
  • Molecular Switches In Autoimmune & Inflammatory Disorder: Diabetes, Arthritis, Lupus, Psoriasis

Molecular switches are dynamic entities capable of transitioning between distinct states in response to specific environmental or biological triggers. These triggers can include changes in pH, light exposure, temperature, redox conditions, or the presence of certain ions or biomolecules. The concept of molecular switching has significantly influenced the medical and pharmaceutical domain by providing a foundation for highly controlled diagnostic and therapeutic systems. The ability to precisely regulate biological responses has made molecular switches indispensable in the development of advanced drug delivery systems, real-time diagnostic tools, and personalized therapeutic interventions.

In the pharmaceutical sector, molecular switches have revolutionized drug delivery by enabling precise spatiotemporal control over the release of active pharmaceutical ingredients. One of the most widely explored triggers is pH, as pathological conditions like cancer and inflammation often create acidic microenvironments. pH-sensitive molecular switches are employed in nanoparticle-based drug carriers, which remain stable under normal physiological conditions but disassemble in acidic environments to release their payload. For example, the FPBC@SN nanoparticle system integrates a pH-sensitive molecular switch to target acidic cytoplasm in breast cancer cells. This system releases both sorafenib, which induces ferroptosis, and an IDO inhibitor to enhance tumor immunity. By leveraging such switches, these systems reduce off-target effects and enhance the therapeutic index, addressing key challenges in oncology.

Table of Contents

1. Introduction To Molecular Switches

  • 1.1 Overview
  • 1.2 History & Emergence In Medicine

2. Molecular Switches Clinical Significance In Medicine

3. Molecular Switches Significance In Drug Delivery & Release

  • 3.1 Overview
  • 3.2 Ongoing Research & Developments

4. Molecular Switches Significance As Therapeutic Targets

5. Molecular Switches - Broad Classification

6. Molecular Switches By Cancer Indication

  • 6.1 Breast Cancer
  • 6.2 Prostate Cancer
  • 6.3 Colorectal cancer
  • 6.4 Lung Cancer
  • 6.5 Gastric Cancer

7. Molecular Switches By Neurological Disorder

  • 7.1 Parkinson's Disease
  • 7.2 Alzheimer's Disease
  • 7.3 Multiple Sclerosis

8. Molecular Switches By Infectious Disease

  • 8.1 Viral Infection
  • 8.2 Bacterial Infection

9. Molecular Switches By Autoimmune & Inflammatory Disorder

  • 9.1 Diabetes
  • 9.2 Arthritis
  • 9.3 Lupus
  • 9.4 Psoriasis

10. Molecular Switches By Cardiovascular Disease

  • 10.1 Myocardial Infarction (Heart Attack)
  • 10.2 Others

11. Molecular Switches Significance In Regenerative Medicine

12. Sales Insight Of Key Drugs Targeting Molecular Switches

13. Molecular Switches In Drug Formulation

  • 13.1 Smart Drug Formulations & Molecular Switches
  • 13.2 Biomaterial Based Drug Delivery Systems
  • 13.3 Self Regulating Drug Systems

14. Current Trends & Emerging Technologies

  • 14.1 Molecular Switches In Nanomedicine
  • 14.2 Innovations In Responsive Drug Systems
  • 14.3 Integration With Artificial Intelligence & Machine Learning

15. Future Perspectives & Directions

  • 15.1 Advancements In Molecular Switch Technology
  • 15.2 The Future Of Personalized Medicine With Molecular Switches
  • 15.3 Potential Impact On Drug Discovery & Therapeutics

List of Figures

  • Figure 1-1: Molecular Switches - Introduction
  • Figure 1-2: Molecular Switches - Emergence & Evolution
  • Figure 3-1: Molecular Switches In Drug Delivery & Release
  • Figure 3-2: Drug Delivery Systems With Molecular Switches
  • Figure 3-3: Peptide-Based Drug Delivery System
  • Figure 3-4: Switchable Molecular Tweezers
  • Figure 3-5: Rotaxane-Based Drug Delivery System
  • Figure 3-6: Enzyme-Activatable Drug Delivery System
  • Figure 3-7: Light-Responsive Drug Delivery Systems
  • Figure 3-8: Photo-Responsive Drug Delivery Using Spiropyran
  • Figure 3-9: Photopharmacological Approach For Neuropathic Pain
  • Figure 3-10: Insulin Prodrug Activation
  • Figure 6-1: AR Activation & Its Dual Role In Tumor Growth
  • Figure 6-2: PRL-3 Activation & AMPI-109's Impact On TNBC
  • Figure 6-3: Molecular Switch in Prostate Cancer
  • Figure 7-1: PINK1-Parkin Molecular Switch In Parkinson's Disease
  • Figure 8-1: Molecular Switches In Viral infections

Figure 11 1: Molecular Switches In Regenerative Medicine

  • Figure 13-1: Smart Drug Delivery With Molecular Switches
  • Figure 13-2: Biomaterial Based Drug Delivery Systems With Molecular Switches
  • Figure 13-3: Self-regulating Drug Systems With Molecular Switches
  • Figure 14-1: Molecular Switches In Nanomedicine
  • Figure 14-2: Molecular switches In Responsive Drug Systems
  • Figure 14-3: Integration Of Molecular Switches With Artificial Intelligence & Machine Learning

List of Tables

  • Table 1-1: Traditional v/s Molecular Switch Enabled Drug Delivery
  • Table 4-1: Examples Of Approved Drugs Targeting Molecular Switches
  • Table 5-1: Molecular Switches - Broad Classification
  • Table 12-1: Top 20 Drugs Targeting Molecular Switches (US$ Billion), 2022-2024