Product Code: SE 9158
The global cyber-physical systems market is expected to be valued at USD 124.1 billion in 2024 and is projected to reach USD 255.3 billion by 2029; it is expected to grow at a CAGR of 15.5% from 2024 to 2029. The cyber-physical systems market is predominantly driven by smart infrastructure development that involves innovative technologies to develop an environment that is more intelligent, eco-friendly, and adaptable. This development includes different structures such as smart grids, intelligent transport systems, and smart buildings that all use CPS (Cyber-Physical Systems) technology. Additionally, smart infrastructure incorporates sensors, Internet of Things (IoT) devices, and automation systems into physical facilities for real-time monitoring, predicting potential faults before they occur, and data-driven decision-making to minimize energy consumption costs and improve user experiences.
Scope of the Report |
Years Considered for the Study | 2020-2029 |
Base Year | 2023 |
Forecast Period | 2024-2029 |
Units Considered | Value (USD Billion) |
Segments | By Type, Vertical and Region |
Regions covered | North America, Europe, APAC, RoW |
"IIoT segment holds for the largest share in the cyber-physical systems market"
The IIoT in cyber-physical systems have the highest share of the overall market due to its capability to bring about core changes to industries in which it works. This is done through an effective and efficient integration of physical machinery, and equipment with advanced digital systems, and emerging technologies. IIoT becomes a powerful enabler for seamless data exchange among various devices and systems allowing for real-time monitoring of operations, predictive maintenance that enables one to foresee possible future issues in good time, and better decision-making brought about by higher levels of agility and responsiveness. Consequently, due to such sophisticated integrations there are huge gains on operational efficiency for industries, large cost reductions and finally, this leads to high levels of productivity favorably impacting the bottom line. As part of mainstream implementations rising need for better automation and smarter manufacturing solutions with higher order that require highest levels of IIoT adoption indeed can be observed in all critical industries: manufacturing, energy production and transportation.
"Digital twin segment to account for the highest growth rate in the cyber-physical systems market."
The potential growth rate of the digital twin segment in cyber-physical systems (CPS) market is due to its ability to change predictive analysis, simulation and real-time monitoring. With this, digital twins emulate physical assets, processes or systems so that businesses can monitor and improve the performance in real time without disturbing the physical system itself. The demand for intelligent production coupled with advancements of new artificial intelligence (AI), Internet of Things (IoT), and data analytical platforms have made digital twins the tools of choice. Because various industries want to boost productivity while reducing downtime and use simulation-based models to create innovation, they have become the most important factors contributing to fast growth in CPS industry.
"Based on vertical, the manufacturing to hold second largest share the cyber-physical systems market"
The manufacturing vertical in CPS market holds the second largest share owing to the adaptation of automation, smart technologies and digital transformation initiatives. For instance, manufacturing relies heavily on CPS technologies such as Industrial Internet of Things (IIoT), Industrial Control Systems (ICS) and digital twins to optimize production processes, increase quality control efforts and minimize operational costs. These technologies realize instant tracking, predicted upkeep, and smooth relationships amidst real and abstract systems, thus enhancing the capacity and competitiveness of the sector internationally. In addition, the implementation of CPS in production is increasingly fastened by the quest for industry 4.0 to create advanced factories that are efficient, adaptable and responsive to market trends. Therefore, manufacturing has become a dominant sector through the generalized usage of CPS technologies.
"North America holds a large share in the cyber-physical systems market."
North America region held largest share of cyber-physical systems market in 2023, due to advanced technological infrastructure and higher adoption of state-of-the-art technologies along with significant investment in R&D. Furthermore, this region is focusing on thorough Industry 4.0, smart infrastructure, and digital transformation, which is complimenting the growth of automation solutions supporting CPS market. The region has presence of significant players such as Honeywell International Inc. (US), Rockwell Automation (US) and General Electric Company (US) among others. Such companies are continuously developing robotics and automation technologies with AI and IoT integration, supporting the growth of the cyber-physical systems market.
The study contains insights from various industry experts, from component suppliers to Tier 1 companies and OEMs. The break-up of the primaries is as follows:
- By Company Type: Tier 1 - 26%, Tier 2 - 32%, and Tier 3 - 42%
- By Designation: C-level Executives - 40%, Directors - 30%, and Others - 30%
- By Region: North America - 35%, Europe - 30%, Asia Pacific - 25%, and RoW - 10%
The key players operating in the cyber-physical systems market are ABB (Switzerland), Honeywell International Inc. (US), Rockwell Automation (US), Schneider Electric (France), and Siemens (Germany) among others.
Research Coverage:
The research reports the Cyber-Physical Systems Market, by Type, (Industrial Management [Field Operational Technology, ICS (Industrial Control Systems), IIoT, Digital Twin], Smart Operations [Smart Buildings, Intelligent Transportation Systems (ITS), Smart Grids, and Smart Agriculture], Robotics), By Vertical (Manufacturing, Healthcare, Agriculture, Automotive & Transportation, Aerospace, Energy, and Infrastructure (Smart Cities), Oil & Gas) and Region (North America, Europe, Asia Pacific, and Rest of the world (RoW)). The report's scope covers detailed information regarding the major factors, such as drivers, restraints, challenges, and opportunities, influencing the growth of the cyber-physical systems market. A thorough analysis of the key industry players has been done to provide insights into their business overviews, products, key strategies, Contracts, partnerships, and agreements. New product launches, mergers and acquisitions, and recent developments related to the cyber-physical systems market have been covered thoroughly in the report. This report covers a competitive analysis of upcoming cyber-physical systems market ecosystem startups.
Reasons to buy this report
The report will help the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall authentication and brand protection market and the subsegments. This report will help stakeholders understand the competitive landscape and gain more insights to position their businesses better and to plan suitable go-to-market strategies. The report also helps stakeholders understand the pulse of the market and provides them with information on key market drivers, restraints, challenges, and opportunities.
The report provides insights on the following pointers:
- Analysis of key drivers (Evolution in operational technology, Smart Infrastructure Development, Growing Use of Digital Twin Technology, Healthcare and Personalized Medicine, Advancements in Automotive and Transportation), restraints (High Implementation Costs, Complexity of integration coupled with the lack of availability of skilled operators), opportunities (Integration of CPS and Internet of Things (IoT), Smart Energy Management with CPS, Emerging Smart Agriculture Technologies), and challenges (Need of Different Protection Tools from IT Systems, Growing Security Risks) influencing the growth of the cyber-physical systems market.
- Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product launches in the cyber-physical systems market
- Market Development: Comprehensive information about lucrative markets - the report analyses the cyber-physical systems market across varied regions.
- Market Diversification: Exhaustive information about new products, untapped geographies, recent developments, and investments in the cyber-physical systems market
- Competitive Assessment: In-depth assessment of market shares, growth strategies, and service offerings of leading players like ABB (Switzerland), Honeywell International Inc. (US), Rockwell Automation (US), Schneider Electric (France), and Siemens (Germany) among others in the cyber-physical systems market
TABLE OF CONTENTS
1 INTRODUCTION
- 1.1 STUDY OBJECTIVES
- 1.2 MARKET DEFINITION
- 1.3 STUDY SCOPE
- 1.3.1 MARKETS COVERED AND REGIONAL SCOPE
- 1.3.2 INCLUSIONS AND EXCLUSIONS
- 1.3.3 YEARS CONSIDERED
- 1.4 CURRENCY CONSIDERED
- 1.5 LIMITATIONS
- 1.6 STAKEHOLDERS
2 RESEARCH METHODOLOGY
- 2.1 RESEARCH APPROACH
- 2.1.1 SECONDARY AND PRIMARY RESEARCH
- 2.1.2 SECONDARY DATA
- 2.1.2.1 List of key secondary sources
- 2.1.2.2 Key data from secondary sources
- 2.1.3 PRIMARY DATA
- 2.1.3.1 List of primary interview participants
- 2.1.3.2 Breakdown of primaries
- 2.1.3.3 Key data from primary sources
- 2.1.3.4 Key industry insights
- 2.2 MARKET SIZE ESTIMATION METHODOLOGY
- 2.2.1 BOTTOM-UP APPROACH
- 2.2.1.1 Approach to arrive at market size using bottom-up analysis (demand side)
- 2.2.2 TOP-DOWN APPROACH
- 2.2.2.1 Approach to arrive at market size using top-down analysis (supply side)
- 2.3 MARKET BREAKDOWN AND DATA TRIANGULATION
- 2.4 RESEARCH ASSUMPTIONS
- 2.5 RESEARCH LIMITATIONS
- 2.6 RISK ANALYSIS
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
- 4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN CYBER-PHYSICAL SYSTEMS MARKET
- 4.2 CYBER-PHYSICAL SYSTEMS MARKET IN NORTH AMERICA, BY TECHNOLOGY AND COUNTRY
- 4.3 CYBER-PHYSICAL SYSTEMS MARKET, BY TECHNOLOGY TYPE
- 4.4 CYBER-PHYSICAL SYSTEMS MARKET, BY REGION
5 MARKET OVERVIEW
- 5.1 INTRODUCTION
- 5.2 MARKET DYNAMICS
- 5.2.1 DRIVERS
- 5.2.1.1 Rapid advances in operational technology
- 5.2.1.2 Increasing implementation of smart infrastructure projects
- 5.2.1.3 Rising deployment of digital twin technology
- 5.2.1.4 Burgeoning demand for personalized medicines
- 5.2.1.5 Increasing development of intelligent transportation systems
- 5.2.2 RESTRAINTS
- 5.2.2.1 High implementation costs
- 5.2.2.2 Shortage of skilled operators
- 5.2.3 OPPORTUNITIES
- 5.2.3.1 Integration of CPS with IoT technology for advanced applications
- 5.2.3.2 Rising emphasis on energy efficiency
- 5.2.3.3 Growing preference for precision farming techniques
- 5.2.4 CHALLENGES
- 5.2.4.1 Challenges associated with developing specialized protection tools
- 5.2.4.2 Growing security risks
- 5.3 VALUE CHAIN ANALYSIS
- 5.4 ECOSYSTEM ANALYSIS
- 5.5 INVESTMENT AND FUNDING SCENARIO
- 5.6 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS
- 5.7 PRICING ANALYSIS
- 5.7.1 AVERAGE SELLING PRICE TREND OF DIGITAL TWIN, BY KEY PLAYER
- 5.7.2 AVERAGE SELLING PRICE TREND, BY REGION
- 5.8 TECHNOLOGY ANALYSIS
- 5.8.1 KEY TECHNOLOGIES
- 5.8.1.1 Sensors and actuators
- 5.8.1.2 Embedded systems
- 5.8.1.3 Real-time operating systems (RTOS)
- 5.8.1.4 Control systems
- 5.8.1.5 Cybersecurity
- 5.8.1.6 Artificial intelligence (AI) and machine learning (ML)
- 5.8.2 COMPLEMENTARY TECHNOLOGIES
- 5.8.2.1 Internet of Things (IoT)
- 5.8.2.2 Augmented reality (AR) and virtual reality (VR)
- 5.8.2.3 Edge computing
- 5.8.3 ADJACENT TECHNOLOGIES
- 5.8.3.1 Blockchain and distributed ledger technology (DLT)
- 5.9 IMPACT OF GEN AI/AI ON CYBER-PHYSICAL SYSTEMS MARKET
- 5.9.1 INTRODUCTION
- 5.9.2 ADVANCEMENTS IN CYBER-PHYSICAL SYSTEMS DUE TO AI
- 5.9.2.1 Operational technology
- 5.9.2.2 Industrial control systems (ICS)
- 5.9.2.3 IIoT
- 5.9.2.4 Digital twin
- 5.9.2.5 Smart buildings
- 5.9.2.6 Intelligent transportation systems (ITS)
- 5.9.2.7 Smart grids
- 5.9.2.8 Smart agriculture
- 5.9.2.9 Robotics
- 5.9.3 CASE STUDIES
- 5.10 PORTER'S FIVE FORCES ANALYSIS
- 5.10.1 INTENSITY OF COMPETITIVE RIVALRY
- 5.10.2 BARGAINING POWER OF SUPPLIERS
- 5.10.3 BARGAINING POWER OF BUYERS
- 5.10.4 THREAT OF NEW ENTRANTS
- 5.10.5 THREAT OF SUBSTITUTES
- 5.11 KEY STAKEHOLDERS AND BUYING CRITERIA
- 5.11.1 KEY STAKEHOLDERS IN BUYING PROCESS
- 5.11.2 BUYING CRITERIA
- 5.12 CASE STUDY ANALYSIS
- 5.12.1 METROPOLITAN AIRPORTS COMMISSION ADOPTS HONEYWELL'S NIAGARA FRAMEWORK TO IMPROVE OPERATIONAL EFFICIENCY
- 5.12.2 ARB MIDSTREAM DEPLOYS SCADA GRAPHICS AND IGNITION TEMPLATES TO ENABLE OPERATIONAL READINESS OF CRUDE OIL PIPELINE
- 5.12.3 INDIAN PUBLIC TRANSPORTATION SYSTEM IMPLEMENTS INTELLIGENT TRANSPORTATION SYSTEM TO OPTIMIZE OPERATIONS
- 5.12.4 EQUS PARTNERS WITH SCHNEIDER ELECTRIC TO IMPLEMENT SMART SOLUTION FEATURING ADVANCED METERING INFRASTRUCTURE TO IMPROVE GRID RELIABILITY
- 5.13 TRADE ANALYSIS
- 5.13.1 IMPORT SCENARIO (HS CODE 847950)
- 5.13.2 EXPORT SCENARIO (HS CODE 847950)
- 5.13.3 IMPORT SCENARIO (HS CODE 902690)
- 5.13.4 EXPORT SCENARIO (HS CODE 902690)
- 5.13.5 IMPORT SCENARIO (HS CODE 903289)
- 5.13.6 EXPORT SCENARIO (HS CODE 903289)
- 5.14 TARIFF AND REGULATORY LANDSCAPE
- 5.14.1 TARIFF ANALYSIS
- 5.14.2 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
- 5.14.3 REGULATIONS
- 5.14.4 STANDARDS
- 5.15 PATENT ANALYSIS
- 5.16 KEY CONFERENCES AND EVENTS, 2024-2025
6 FRAMEWORKS OF CYBER-PHYSICAL SYSTEMS
- 6.1 INTRODUCTION
- 6.2 PERCEPTION LAYER
- 6.3 DATA TRANSMISSION & MANAGEMENT LAYER
- 6.4 APPLICATION LAYER
7 COMPONENTS OF CYBER-PHYSICAL SYSTEMS
- 7.1 INTRODUCTION
- 7.2 HARDWARE
- 7.3 SOFTWARE
- 7.4 SERVICES
8 CYBER AND PHYSICAL SYSTEMS
- 8.1 INTRODUCTION
- 8.2 CYBER SYSTEMS
- 8.2.1 EDGE COMPUTING
- 8.2.2 DATA PROCESSING & ANALYTICS
- 8.2.3 NETWORKING
- 8.2.4 SECURITY
- 8.3 PHYSICAL SYSTEMS
- 8.3.1 SENSORS
- 8.3.2 ACTUATORS
- 8.3.3 DIGITAL & ANALOG DEVICES
- 8.3.4 ENERGY SOURCES
- 8.3.5 COMMUNICATION INTERFACE
- 8.3.6 DATA STORAGE DEVICES
9 CYBER-PHYSICAL SYSTEMS MARKET, BY TYPE
- 9.1 INTRODUCTION
- 9.2 OPEN-LOOP
- 9.2.1 SIMPLE DESIGN AND COST-EFFECTIVENESS TO CONTRIBUTE TO SEGMENTAL GROWTH
- 9.3 CLOSED-LOOP
- 9.3.1 REQUIREMENT FOR REAL-TIME FEEDBACK IN COMPLEX ENVIRONMENTS TO FUEL SEGMENTAL GROWTH
10 CYBER-PHYSICAL SYSTEMS MARKET, BY TECHNOLOGY
- 10.1 INTRODUCTION
- 10.2 INDUSTRIAL MANAGEMENT
- 10.2.1 OPERATIONAL TECHNOLOGY
- 10.2.1.1 Mounting demand from process industries to drive market
- 10.2.2 INDUSTRIAL CONTROL SYSTEMS
- 10.2.2.1 Increasing complexity of industrial operations to boost segmental growth
- 10.2.3 IIOT
- 10.2.3.1 Growing adoption of Industry 4.0 practices to augment segmental growth
- 10.2.4 DIGITAL TWIN
- 10.2.4.1 Increasing use in industries to optimize maintenance schedules to fuel segmental growth
- 10.3 SMART OPERATIONS
- 10.3.1 SMART BUILDINGS
- 10.3.1.1 Burgeoning demand for energy-efficient solutions to accelerate segmental growth
- 10.3.2 INTELLIGENT TRANSPORTATION SYSTEMS
- 10.3.2.1 Rising emphasis on optimizing traffic flow to foster segmental growth
- 10.3.3 SMART GRIDS
- 10.3.3.1 Software
- 10.3.3.1.1 Advanced metering infrastructure
- 10.3.3.1.1.1 Rising focus on reducing carbon footprints to boost segmental growth
- 10.3.3.1.2 Smart grid distribution management
- 10.3.3.1.2.1 Growing establishment of distributed renewable power generation plants to drive market
- 10.3.3.1.3 Smart grid network management
- 10.3.3.1.3.1 Ability to provide IP-based communication networks to fuel segmental growth
- 10.3.3.1.4 Grid asset management
- 10.3.3.1.4.1 Increasing need to store real-time data for continuous data monitoring to boost segmental growth
- 10.3.3.1.5 Substation automation
- 10.3.3.1.5.1 Rising focus on preventing blackouts to fuel segmental growth
- 10.3.3.1.6 Smart grid security
- 10.3.3.1.6.1 Increasing instances of cyber-attacks to contribute to segmental growth
- 10.3.3.1.7 Billing & customer information
- 10.3.3.1.7.1 Need for customer relationship management to accelerate segmental growth
- 10.3.3.2 Hardware
- 10.3.3.2.1 Sensors
- 10.3.3.2.1.1 Integration with advanced intelligence for autonomous task execution to expedite segmental growth
- 10.3.3.2.2 Networking
- 10.3.3.2.2.1 Emphasis on enhancing communication to augment segmental growth
- 10.3.3.3 SERVICES
- 10.3.3.3.1 Increasing focus on operational efficiency to boost segmental growth
- 10.3.4 SMART AGRICULTURE
- 10.3.4.1 Need for sustainable farming practices to contribute to segmental growth
- 10.4 ROBOTICS
- 10.4.1 RISING INTEGRATION OF ROBOTS IN INDUSTRIES TO PERFORM PRECISE OPERATIONS TO FOSTER SEGMENTAL GROWTH
11 CYBER-PHYSICAL SYSTEMS MARKET, BY VERTICAL
- 11.1 INTRODUCTION
- 11.2 MANUFACTURING
- 11.2.1 INCREASING ADOPTION OF INDUSTRY 4.0 TECHNOLOGIES TO BOOST SEGMENTAL GROWTH
- 11.3 HEALTHCARE
- 11.3.1 RISING EMPHASIS ON SUPPORTING PRECISE MEDICAL INTERVENTIONS TO AUGMENT SEGMENTAL GROWTH
- 11.4 AGRICULTURE
- 11.4.1 GROWING NEED FOR SUSTAINABLE FARMING PRACTICES TO DRIVE MARKET
- 11.5 AUTOMOTIVE & TRANSPORTATION
- 11.5.1 RAPID ADVANCES IN AUTONOMOUS DRIVING TECHNOLOGIES TO BOOST SEGMENTAL GROWTH
- 11.6 AEROSPACE
- 11.6.1 INCREASING FOCUS ON DESIGN IMPROVEMENT AND OPERATIONAL EFFICIENCY TO AUGMENT SEGMENTAL GROWTH
- 11.7 ENERGY
- 11.7.1 GROWING DEMAND FOR REAL-TIME MONITORING SYSTEMS TO REVOLUTIONIZE GRID OPERATIONS TO DRIVE MARKET
- 11.8 INFRASTRUCTURE
- 11.8.1 INCREASING FOCUS ON SMART CITY DEVELOPMENT OF FOSTER SEGMENTAL GROWTH
- 11.9 OIL & GAS
- 11.9.1 RISING NEED TO PREVENT DOWNTIME AND MINIMIZE ENVIRONMENTAL IMPACTS TO ACCELERATE SEGMENTAL GROWTH
12 CYBER-PHYSICAL SYSTEMS MARKET, BY REGION
- 12.1 INTRODUCTION
- 12.2 NORTH AMERICA
- 12.2.1 MACROECONOMIC OUTLOOK FOR NORTH AMERICA
- 12.2.2 US
- 12.2.2.1 Rapid digitalization and industrial automation to augment market growth
- 12.2.3 CANADA
- 12.2.3.1 Increasing support for emerging technologies to boost market growth
- 12.2.4 MEXICO
- 12.2.4.1 Rising emphasis on smart manufacturing to foster market growth
- 12.3 EUROPE
- 12.3.1 MACROECONOMIC OUTLOOK FOR EUROPE
- 12.3.2 GERMANY
- 12.3.2.1 Increasing investment in digital technologies and smart factory solutions to fuel market growth
- 12.3.3 UK
- 12.3.3.1 Growing focus on advancing energy infrastructure to contribute to market growth
- 12.3.4 FRANCE
- 12.3.4.1 Rising emphasis on sustainable development and energy efficiency to accelerate market growth
- 12.3.5 REST OF EUROPE
- 12.4 ASIA PACIFIC
- 12.4.1 MACROECONOMIC OUTLOOK FOR ASIA PACIFIC
- 12.4.2 CHINA
- 12.4.2.1 Increasing focus on optimizing energy distribution and improving power grid reliability to drive market
- 12.4.3 JAPAN
- 12.4.3.1 Growing emphasis on addressing cyber risks to contribute to market growth
- 12.4.4 SOUTH KOREA
- 12.4.4.1 Rising integration of advanced technologies for smart city development to bolster segmental growth
- 12.4.5 INDIA
- 12.4.5.1 Growing focus on digital transformation to contribute to market growth
- 12.4.6 REST OF ASIA PACIFIC
- 12.5 ROW
- 12.5.1 MACROECONOMIC OUTLOOK FOR ROW
- 12.5.2 MIDDLE EAST
- 12.5.2.1 Rising emphasis on technological advancement and sustainability to accelerate market growth
- 12.5.2.2 GCC countries
- 12.5.2.3 Rest of Middle East
- 12.5.3 AFRICA
- 12.5.3.1 Increasing modernization of energy distribution systems to boost market growth
- 12.5.4 SOUTH AMERICA
- 12.5.4.1 Rising deployment of advanced technologies for industrial automation to fuel market growth
13 COMPETITIVE LANDSCAPE
- 13.1 OVERVIEW
- 13.2 KEY PLAYER STRATEGIES/RIGHT TO WIN, 2020-2024
- 13.3 MARKET SHARE ANALYSIS, 2023
- 13.4 REVENUE ANALYSIS, 2019-2023
- 13.5 COMPANY VALUATION AND FINANCIAL METRICS
- 13.6 BRAND/PRODUCT COMPARISON
- 13.7 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2023
- 13.7.1 STARS
- 13.7.2 EMERGING LEADERS
- 13.7.3 PERVASIVE PLAYERS
- 13.7.4 PARTICIPANTS
- 13.7.5 COMPANY FOOTPRINT: KEY PLAYERS, 2023
- 13.7.5.1 Company footprint
- 13.7.5.2 Technology footprint
- 13.7.5.3 Vertical footprint
- 13.7.5.4 Region footprint
- 13.8 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2023
- 13.8.1 PROGRESSIVE COMPANIES
- 13.8.2 RESPONSIVE COMPANIES
- 13.8.3 DYNAMIC COMPANIES
- 13.8.4 STARTING BLOCKS
- 13.8.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2023
- 13.8.5.1 Detailed list of key startups/SMEs
- 13.8.5.2 Competitive benchmarking of key startups/SMEs
- 13.9 COMPETITIVE SCENARIO
- 13.9.1 PRODUCT LAUNCHES
- 13.9.2 DEALS
- 13.9.3 EXPANSIONS
- 13.9.4 OTHERS
14 COMPANY PROFILES
- 14.1 KEY PLAYERS
- 14.1.1 ABB
- 14.1.1.1 Business overview
- 14.1.1.2 Products/Solutions/Services offered
- 14.1.1.3 Recent developments
- 14.1.1.3.1 Product launches
- 14.1.1.3.2 Deals
- 14.1.1.3.3 Expansions
- 14.1.1.4 MnM view
- 14.1.1.4.1 Key strengths/Right to win
- 14.1.1.4.2 Strategic choices
- 14.1.1.4.3 Weaknesses/Competitive threats
- 14.1.2 HONEYWELL INTERNATIONAL INC.
- 14.1.2.1 Business overview
- 14.1.2.2 Products/Solutions/Services offered
- 14.1.2.3 Recent developments
- 14.1.2.3.1 Product launches
- 14.1.2.3.2 Deals
- 14.1.2.4 MnM view
- 14.1.2.4.1 Key strengths/Right to win
- 14.1.2.4.2 Strategic choices
- 14.1.2.4.3 Weaknesses/Competitive threats
- 14.1.3 HITACHI, LTD.
- 14.1.3.1 Business overview
- 14.1.3.2 Products/Solutions/Services offered
- 14.1.3.3 Recent developments
- 14.1.3.4 MnM view
- 14.1.3.4.1 Key strengths/Right to win
- 14.1.3.4.2 Strategic choices
- 14.1.3.4.3 Weaknesses/Competitive threats
- 14.1.4 SCHNEIDER ELECTRIC
- 14.1.4.1 Business overview
- 14.1.4.2 Products/Solutions/Services offered
- 14.1.4.3 Recent developments
- 14.1.4.3.1 Product launches
- 14.1.4.3.2 Deals
- 14.1.4.4 MnM view
- 14.1.4.4.1 Key strengths/Right to win
- 14.1.4.4.2 Strategic choices
- 14.1.4.4.3 Weaknesses/Competitive threats
- 14.1.5 SIEMENS
- 14.1.5.1 Business overview
- 14.1.5.2 Products/Solutions/Services offered
- 14.1.5.3 Recent developments
- 14.1.5.3.1 Product launches
- 14.1.5.3.2 Deals
- 14.1.5.3.3 Others
- 14.1.5.4 MnM view
- 14.1.5.4.1 Key strengths/Right to win
- 14.1.5.4.2 Strategic choices
- 14.1.5.4.3 Weaknesses/Competitive threats
- 14.1.6 ROCKWELL AUTOMATION
- 14.1.6.1 Business overview
- 14.1.6.2 Products/Solutions/Services offered
- 14.1.6.3 Recent developments
- 14.1.7 CONTINENTAL AG
- 14.1.7.1 Business overview
- 14.1.7.2 Products/Solutions/Services offered
- 14.1.7.3 Recent developments
- 14.1.7.3.1 Product launches
- 14.1.7.3.2 Deals
- 14.1.8 GENERAL ELECTRIC COMPANY
- 14.1.8.1 Business overview
- 14.1.8.2 Products/Solutions/Services offered
- 14.1.8.3 Recent developments
- 14.1.8.3.1 Product launches
- 14.1.9 TOSHIBA CORPORATION
- 14.1.9.1 Business overview
- 14.1.9.2 Products/Solutions/Services offered
- 14.1.9.3 Recent developments
- 14.1.9.3.1 Product launches
- 14.1.10 ROBERT BOSCH GMBH
- 14.1.10.1 Business overview
- 14.1.10.2 Products/Solutions/Services offered
- 14.1.10.3 Recent developments
- 14.1.10.3.1 Product launches
- 14.1.10.3.2 Deals
- 14.1.11 CISCO SYSTEMS, INC.
- 14.1.11.1 Business overview
- 14.1.11.2 Products/Solutions/Services offered
- 14.1.11.3 Recent developments
- 14.1.11.3.1 Product launches
- 14.1.11.3.2 Deals
- 14.2 OTHER PLAYERS
- 14.2.1 EMERSON ELECTRIC CO.
- 14.2.2 INTEL CORPORATION
- 14.2.3 IBM CORPORATION
- 14.2.4 DASSAULT SYSTEMES
- 14.2.5 MICROSOFT
- 14.2.6 JOHNSON CONTROLS INC.
- 14.2.7 ORACLE
- 14.2.8 SAP SE
- 14.2.9 DEERE & COMPANY
- 14.2.10 TRIMBLE INC.
- 14.2.11 AGCO CORPORATION
- 14.2.12 MITSUBISHI ELECTRIC CORPORATION
- 14.2.13 ITRON INC.
- 14.2.14 FUJI ELECTRIC CO., LTD.
- 14.2.15 YASKAWA ELECTRIC CORPORATION
- 14.2.16 FANUC CORPORATION
- 14.2.17 CUBIC CORPORATION
15 APPENDIX
- 15.1 INSIGHTS FROM INDUSTRY EXPERTS
- 15.2 DISCUSSION GUIDE
- 15.3 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL
- 15.4 CUSTOMIZATION OPTIONS
- 15.5 RELATED REPORTS
- 15.6 AUTHOR DETAILS