封面
市場調查報告書
商品編碼
1403037

實驗室機械臂-市場佔有率分析、產業趨勢與統計、2024年至2029年成長預測

Robotic Arms In Laboratories - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts 2024 - 2029

出版日期: | 出版商: Mordor Intelligence | 英文 110 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

實驗室機械臂市場上年度價值 53 億美元,預計未來五年將達到 101.8 億美元,預測期內複合年成長率為 11.5%。

機械臂正迅速應用於研究實驗室,用於需要彈性、有效利用空間以及實驗室周邊設備無縫整合的應用。隨著時間的推移,採用率不斷提高,因為該手臂易於編程。樣品製備、分析儀器操作和樣品處理是這些機器人執行的典型業務。因此,實驗室自動化已成為實驗室機械臂使用的主要驅動力。

實驗室機械手臂-市場-IMG1

主要亮點

  • 機械臂廣泛應用於檢測開發、細胞生物學、生物檢測驗證、DNA 定量、PCR 設定、淨化等。它們針對處理標準實驗室設備(例如微孔板、儲液槽和一次性吸頭架)進行了最佳化。它們還可用於裝載和卸載基於微孔板的實驗室設備,例如讀取器、清洗和試劑分配器。此外,在生物醫學研究中,機械臂主要用於樣本處理。機械臂在藥物研發過程中的影響力有限,這就是為什麼開發、測試和商業化過程平均需要15至20年的時間。實驗室自動化和機器人技術(尤其是人工智慧和機器學習)的最新改進為生命科學和製藥領域創造了新的前沿。我們現在可以以超出人類能力的速度和準確性完成任務。
  • 例如,FDA 藥物評估與研究中心 (CDER) 最近核准了50 種全新藥物和生物製藥。在核准的50種新藥和生物製藥中,有33種是小分子,17種是單株抗體等大分子藥物。然而,近年來核准的生物製藥數量一直在穩步增加。如此大量的藥物核准可能會推動研究目標市場的發展。
  • 此外,由於協作機械臂具有穩定性、高精度、重複性、多自由度、移動性、遠端控制等明顯優勢,在醫學影像和手術中的應用已經有一段時間了。機器人手術現在已成為許多外科手術的現實。根據英國國家衛生服務局的數據,2021 年 4 月至 2022 年 3 月期間,英國報告了 4,330 萬次影像檢查。據估計,2022 年 3 月進行了 367 萬次影像檢查。 2022 年 3 月,最常見的診斷影像類型是平片(X 光),有 182 萬例,其次是診斷超音波(85 萬例)、電腦斷層掃描(電腦斷層掃描)和磁振造影(5,600 萬例)。
  • 此外,由於患者數量的增加以及可檢測的檢測項目的增加,送往實驗室的檢測項目的數量也在增加。然而,需要更多的工作人員來處理這些樣本,醫療設施也需要人力。根據勞工統計局的數據,對實驗室技術人員的需求正在增加。例如,美國醫學院協會 (AAMC) 預測,到 2030 年,臨床醫生短缺人數將達到 42,600 名,到下一個年終末將短缺 121,300 名。這可能會增加研究市場的需求。
  • 此外,即使在新冠疫情之後,測試實驗室在提高能力和速度方面也面臨越來越大的壓力。隨著每天測試的樣品數量的增加,供應商對自動化系統的市場開拓不斷成長,為市場成長創造了機會。例如,據宣布,機械臂可以在不到四分鐘的時間內從一個小瓶中取出 12 劑Astra Zeneca疫苗。泰國朱拉隆功大學的研究小組開發了該設備。通常,醫療專業人員可以從單一小瓶中手動分配最多 10 劑劑量。與普通機械手臂相比,此機械臂可提高產量約20%。該裝置準確地承諾每個疫苗瓶的給藥為 20%(10-12 劑)。
  • 此外,俄羅斯和烏克蘭之間的戰爭正在影響電子元件供應鏈。衝突可能會擾亂供應鏈,導致原料短缺和價格上漲,影響機械臂製造商並導致最終用戶的成本更高。

實驗室機械臂市場趨勢

基因組學和蛋白​​質組學應用預計將佔據主要市場佔有率

  • 基因組學是指生物體整個基因組的研究,同時結合遺傳學的元素。科學家不斷尋求先進基因序列測定更高的準確性、更高的通量和更低的成本。儘管大多數實驗室缺乏自動化,但自動化通常使這一切成為可能。
  • 近年來技術的進步、臨床研究投資的增加以及計算能力的增強導致了資料分析的進步,揭示了未知的相關性、隱藏的模式和其他見解,特別是在測試大型資料集時。在這方面,我們的知識基因組定序已顯著改善。此外,新的醫學進步正在迅速發生,這主要歸功於基因組分析的最新發展。 DNA 序列分析可以更清楚地了解遺傳變異如何導致疾病,從而帶來新的治療方法。據NIH稱,美國國立衛生研究院的臨床研究經費為180億美元。
  • 此外,實驗室自動化為更大的彈性、更高的通量和經濟實惠的解決方案創造了空間。它提供更快的處理速度,讓您可以加快流程,而不必擔心缺乏可靠性和準確性。基因型鑒定和 DNA定序已經變得負擔得起,而且成長速度穩定。自動化大規模測序過程的幾乎每一步,包括 DNA 分離、DNA 克隆或擴增、酶促測序反應的準備、DNA精製以及帶有螢光標記的 DNA 片段的分離和檢測以獲得 DNA 序列。
  • 基因組學具有提高醫療效果和加速精準醫療的潛力,但最有前景的領域之一是將基因檢測引入臨床試驗。隨著科學的突飛猛進以及人們對基因組學影響的認知不斷增強,我們有必要也有機會最大限度地發揮所收集樣本及其生成的資料的價值。因此,臨床開發和研究的各個階段都廣泛需要基因樣本收集。
  • 2022年4月,由印度38家基因組序列測定機構組成的INSACOG(印度SARS-CoV-2基因組學聯盟)估計,1月至4月印度已對89,860個樣本進行了序列測定,並發表了一份報告。目前總合240,570 個樣本已完成定序。印度所有病例中只有 0.397% 得到了定序。這是根據全球最廣泛的冠狀病毒基因組資料庫GISAID(全球禽流感資料共享計劃)的最新資料得出的。基因組學可用於識別病毒模式並預防未來的突變。對基因組學和蛋白​​質組學的不斷成長的需求預計將為所研究市場的成長提供有利可圖的機會。
  • 此外,核酸分離、RNAi篩檢、CRISPR 分析、PCR 和基因表現分析只是使用自動化的基因組學應用的一部分。實驗室自動化參與企業/供應商正在開發工具來滿足這些應用要求。例如,Tecan Group 最近發布了新的 Fluent 自動化工作站平台。該平台包含多種功能,可簡化日常實驗室自動化並提高工作流程生產力。該技術在檢測過程中動態反應,並根據實際時間進行調整,以持續保持最佳吞吐量。
實驗室機械手臂-市場-IMG2

預計北美將佔據主要市場佔有率

  • 美國長期以來一直是臨床研究的先驅。該國是輝瑞、諾華、葛蘭素史克、強生和諾華等主要製藥公司的所在地。政府也擁有最集中的委外研發機構(CRO)。該國重要的 CRO 包括 Laboratory Corp. of America Holdings、IQVIA、SyneosHealth 和 Parexel International Corp.。
  • 由於行業巨頭的存在和嚴格的 FDA 法規,該國的市場競爭非常激烈。國內公司擴大在實驗室中實施機器人技術和自動化,以獲得相對於競爭的優勢。
  • 2022 年 2 月,Auris Health 和 Kinova 同意續約五年合約。該協議將使 Kinova 繼續支持Auris發展機器人輔助手術的 Monarch 平台。該協議還包括將合作關係再延長三年的選項。 Auris團隊與一家專門生產機械臂的加拿大公司 Kinova 合作,開發了專用機械臂,以支援外科手術的重大進步。 Monarch 平台適用於治療性和診斷性支氣管鏡手術。
  • 此外,杜克大學的工程師和眼科醫生最近開發了一種機器人成像設備,可以自動識別患者的眼睛並掃描其是否有各種眼部疾病的徵兆。新設備結合了機械臂和影像掃描儀,可以在不到一分鐘的時間內自動追蹤和成像患者的眼睛,提供與專業眼科診所使用的傳統掃描儀相媲美的清晰圖像,並且可以產生圖像。此類創新產品在該國的擴張可能會進一步推動所研究市場的成長。
  • 此外,該國擁有數量最多的合約研究組織(CRO)。 Syneos Health、IQVIA、Laboratory Corp. of America Holdings 和 Parexel International Corp. 是美國最大的 CRO。由於所有主要競爭的存在以及 FDA 的嚴格監管,該國的市場競爭非常激烈。這裡的公司正在其實驗室中迅速利用機器人和自動化來獲得相對於競爭的競爭優勢。據ClinicalTrials.gov稱,機器人和自動化的引入是支持臨床研究領域發展的關鍵因素,美國最近提交了超過129,005項臨床試驗。此外,由於機器人和自動化的採用增加,近年來 FDA 的核准顯著增加。

實驗室機械臂行業概況

實驗室機械臂適度細分,主要公司包括 Thermo Fisher Scientific Inc.、Hamilton Company、Hudson Robotics, Inc.、Tecan Group 和 Anton Paar GmbH。市場參與企業正在採取聯盟和收購等策略來加強其產品供應並獲得永續的競爭優勢。

  • 2022 年 3 月 -機械臂幫助威爾斯治療癌症。該醫院的初始設備是在威爾斯建立機器人輔助手術網路計劃的一部分,進一步的技術將在全縣推廣。 NHS 將使用機械臂治療一些前列腺癌和婦科癌症,以及消化器官系統、腎臟和膀胱手術。
  • 2022 年 2 月 - Automata 投資 5,000 萬美元擴大實驗室自動化。由於生物技術和藥物開發領域的發展,該公司開始製造用於個人任務、檢查和材料處理的機械臂。

其他福利:

  • Excel 格式的市場預測 (ME) 表
  • 3 個月的分析師支持

目錄

第1章簡介

  • 研究假設和市場定義
  • 調查範圍

第2章調查方法

第3章執行摘要

第4章市場洞察

  • 市場概況
  • 價值鏈分析
  • 產業吸引力-波特五力分析
    • 新進入者的威脅
    • 買方議價能力
    • 供應商的議價能力
    • 替代品的威脅
    • 競爭公司之間敵對關係的強度
  • 評估宏觀經濟趨勢對市場的影響

第5章市場動態

  • 市場促進因素
    • 實驗室自動化的上升趨勢
    • 人們對實驗室工作安全的興趣日益濃厚
  • 市場抑制因素
    • 昂貴的初始設置

第6章市場區隔

  • 按類型
    • 多關節臂
    • 雙臂
    • 平行連桿臂
    • 其他
  • 按用途
    • 藥物研發
    • 數位影像
    • 基因組與蛋白質體學
    • 臨床診斷
    • 系統生物學
    • 其他
  • 按地區
    • 北美洲
    • 歐洲
    • 亞太地區
    • 世界其他地區 中東/非洲

第7章競爭形勢

  • 公司簡介
    • Thermo Fisher Scientific Inc.
    • Hamilton Company
    • Hudson Robotics, Inc.
    • Tecan Group
    • Anton Paar GmbH
    • Biomrieux SA
    • Siemens Healthineers AG
    • Beckman Coulter Inc.
    • Perkinelmer Inc.
    • QIAGEN NV
    • Abbott Laboratories

第8章投資分析

第9章市場的未來

簡介目錄
Product Code: 47449
Robotic Arms In Laboratories - Market - IMG1

The Robotic Arms in Laboratories Marke was valued at USD 5.3 billion in the previous year and is expected to grow at a CAGR of 11.5% during the forecast period to reach USD 10.18 billion by the next five years. Robotic arms are rapidly being used in research laboratories for applications that need flexibility, effective space use, and seamless integration of lab peripherals. With the simplicity with which the arms may be programmed, the adoption has expanded over time. Preparing samples, running analytical equipment, and handling sample material are typical duties these robots do. As a result, lab automation is the primary driver of laboratory robotic arm use.

Key Highlights

  • Robotic arms are widely used in assay development, cell biology, bioassay validation, DNA quantification, PCR setup, and cleanup. These are optimized for handling standard labware, like microplates, reservoirs, and disposable tip racks. These are also helpful for loading and unloading microplate-based lab instruments, such as readers, washers, and reagent dispensers. Further, biomedical research has employed robotic arms primarily to process samples. Their influence in the drug discovery process remained limited, which explains why the development, testing, and commercialization process takes 15 to 20 years on average. Recent improvements in laboratory automation and robotics, particularly in AI and ML, have created a new frontier in life science and pharmaceutical. Tasks can now be completed at rates and precision that exceed human competence.
  • For instance, the FDA's Center for Drug Evaluation and Research (CDER) recently approved 50 brand-new pharmaceutical and biological products. 33 of the 50 novel medications and biological products approved for usage had tiny molecules, while 17 were monoclonal antibodies and other large molecules. However, the number of biological approvals has constantly risen during the past few years. Such huge approvals for drugs will drive the studied market.
  • Furthermore, due to its apparent benefits, including stability, high precision, repeatability, many degrees of freedom, mobility, and remote control, collaborative robotic arms have been used with medical imaging and operations for a while. In many surgical procedures, robotic surgery is now a reality. According to National Health Service (United Kingdom), 43.3 million imaging tests were reported between April 2021 and March 2022 in England. 3.67 million imaging tests were said to have been performed in March 2022. The most prevalent type of imaging in March 2022 was plain radiography (X-rays), with 1.82 million cases, followed by diagnostic ultrasound (0.85 million), computerized axial tomography (CT-scan), and magnetic resonance imaging (0.56 million).
  • Moreover, more tests are being sent to the lab due to a higher number of patients and an increasing number of tests available. However, the need for more staff to process these samples leaves medical facilities needing help. According to the Bureau of Labor Statistics, the demand for lab workers is growing. For instance, the American Association of Medical Colleges (AAMC) predicted that by 2030 there would be a shortage of 42,600 and 121,300 clinicians by the end of the following decade. This would drive the demand for the studied market.
  • Moreover, there has been increased pressure on the laboratories to increase testing labs capacity and speed even in Post-COVID. With the increase in the number of samples being tested every day, the market studied has been witnessing a growth in the developments of automation systems by vendors, which creates opportunities for the studied market growth. For instance, a robotic arm known as"AutoVac" was announced to be capable of extracting roughly 12 doses of the AstraZeneca vaccine from a single vial in under four minutes. A team of researchers at Thailand's Chulalongkorn University created this device. Typically, a medical expert can manually dispense up to 10 dosages from a single vial. Compared to the norm, this robotic arm can increase production by around 20%. The device accurately promises 20% of doses (between 10 and 12) from each vaccination vial.
  • Furthermore, the Russia-Ukraine war is impacting the supply chain of electronic components. The dispute has disrupted the supply chain, causing shortages and price increases for raw materials, affecting robotic arms manufacturers and potentially leading to higher costs for end-users.

Robotic Arms In Laboratories Market Trends

Genomics and Proteomics Application is Expected to Hold Significant Market Share

  • Genomics refers to the study of whole genomes of organisms while incorporating elements from genetics. Scientists always look for improved accuracy, higher throughput, and reduced cost during advanced gene sequencing. Though most labs lack access, automation has often delivered all these.
  • With the technological advancements, increasing investments in clinical research, and computational capacities over the past few years, there has been significant improvement in knowledge of genome sequencing in terms of data analytics advances that show unknown correlations, hidden patterns, and other insights, specifically when testing data sets on a large scale. Moreover, novel medical advances are being made rapidly, mainly due to recent developments in genome analysis. DNA sequence analysis provides a clearer understanding of how genetic variation leads to disease and, thus, will lead to new cures. According to NIH, clinical research funding by the National Institute of Health was USD 18 billion.
  • Furthermore, laboratory automation has made room for great flexibility, higher throughputs, and affordable solutions. It offers faster handling, and the process can be expedited without worrying about a lack of reliability and precision. Genotyping and DNA sequencing have been affordable, and the growth rate is robust. Some instruments can automate nearly every step of the large-scale sequencing process: isolating DNA, cloning or amplifying DNA, preparing enzymatic sequencing reactions, purifying DNA, and separating and detecting DNA fragments with fluorescent labels to obtain DNA sequences.
  • Although genomics has the potential to increase medicine efficacy and speed up precision healthcare, one of the most promising areas is the introduction of genetic testing into clinical trials. With breakthroughs in science and growing awareness of the effect of genomics, there is a need and an opportunity to maximize the value of the gathered samples and the data generated from them. As a result, obtaining genetic samples is extensively urged at all phases and studies of clinical development.
  • In April 2022, INSACOG (Indian SARS-CoV-2 Consortium on Genomics), a group of 38 genome sequencing institutes in India, published a report in which it was estimated that India sequenced 89,860 samples between January and April. There are now 240,570 sequenced samples in total. Only 0.397 percent of India's total cases have been sequenced. According to the most recent data from the Global Initiative on Sharing Avian Influenza Data (GISAID), the world's most extensive database of new coronavirus genome sequences, this is the case. Using genomics will enable the identification of the pattern of the virus and prevent future mutation spread. The increasing need for Genomics & Proteomics is anticipated to be a lucrative opportunity for the studied market's growth.
  • Furthermore, nucleic acid isolation, RNAi screening, CRISPR analysis, PCR, and gene expression analysis are just a few of the genomics applications that use automation. Laboratory automation players/vendors are developing tools to meet these application requirements. Tecan Group, for example, recently introduced their new "Fluent Automation Workstation" platform, which incorporates various capabilities to simplify day-to-day laboratory automation and increase workflow productivity. The technique reacts dynamically during a run, making adjustments based on actual times to maintain continuous optimal throughput, visible in real time via an easy-to-understand Gantt chart.
Robotic Arms In Laboratories - Market - IMG2

North America is Expected to Hold the Significant Market Share

  • The United States has been a pioneer in clinical research for years. This country is home to major pharmaceutical companies, like Pfizer, Novartis, GlaxoSmithKline, J&J, and Novartis. The government also has the highest concentration of contract research organizations (CROs). Some of the significant CROs in the country are Laboratory Corp. of America Holdings, IQVIA, SyneosHealth, and Parexel International Corp.
  • Owing to the presence of all the major players in the industry and stringent FDA regulations, the market is very competitive in the country. Companies in the country are increasingly adopting robotics and automation in labs to gain an advantage over competitors.
  • In February 2022, Auris Health and Kinova agreed to a five-year contract extension. In accordance with the deal, Kinovawould keep assisting Auris in growing its Monarch Platform, which is intended for robotic-assisted surgery. An option to prolong the relationship for a further three years is part of the agreement. To define and create a purpose-built robotic arm to support substantial advancement in surgery, the team at Auris collaborated with Kinova, a Canadian business specializing in robotic arms. The Monarch Platform is intended for therapeutic and diagnostic bronchoscopic operations.
  • In addition, Duke University engineers and ophthalmologists recently created robotic imaging equipment that can automatically identify and scan a patient's eyes for signs of various eye illnesses. The new device, which combines a robotic arm and an imaging scanner, can automatically track and picture a patient's eyes in less than a minute and generate images as clear as those from conventional scanners used in specialized eye clinics. Such expansion of innovative products in the country may further drive the studied market growth.
  • In addition, the country has the most significant number of contract research organizations (CROs). Syneos Health, IQVIA, Laboratory Corp. of America Holdings, and Parexel International Corp. are among the country's largest CROs. The market in the nation is exceptionally competitive, thanks to the presence of all of the main competitors in the business and strict FDA rules. Companies in the country are rapidly using robots and automation in labs to get a competitive advantage over competitors. According to ClinicalTrials.gov, incorporating robots and automation has been a critical component assisting the development of the clinical research sector, with more than 129,005 clinical trials filed in the United States recently. Furthermore, due to the growing adoption of robots and automation, there has been a considerable increase in FDA approvals in recent years.

Robotic Arms In Laboratories Industry Overview

The Robotic Arms in Laboratories is moderately fragmented with the presence of major players like Thermo Fisher Scientific Inc., Hamilton Company, Hudson Robotics, Inc., Tecan Group, and Anton Paar GmbH. Players in the market are adopting strategies such as partnerships and acquisitions to enhance their product offerings and gain sustainable competitive advantage.

  • March 2022- Robot arms will help with cancer procedures in Wales. The hospital's initial equipment is part of plans to create an all-Wales robotic-assisted surgery network, with more technology to be rolled out across the county. The NHS will use robotic arms to treat some prostate and gynecological cancers and surgeries on the digestive system, kidneys, and bladder.
  • February 2022- Automata expanded its lab automation ambitions with USD 50 million. Due to the growing biotech and drug development sectors, the company started making a robotic arm for handling individual tasks, tests, and processing materials.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Value Chain Analysis
  • 4.3 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.3.1 Threat of New Entrants
    • 4.3.2 Bargaining Power of Buyers
    • 4.3.3 Bargaining Power of Suppliers
    • 4.3.4 Threat of Substitute Products
    • 4.3.5 Intensity of Competitive Rivalry
  • 4.4 Assessment of Impact of Macroeconomic Trends on the Market

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Growing Trend of Lab automation
    • 5.1.2 Increasing Focus Towards Work-safety in Laboratories
  • 5.2 Market Restraints
    • 5.2.1 Expensive Initial Setup

6 MARKET SEGMENTATION

  • 6.1 By Type
    • 6.1.1 Articulated Arm
    • 6.1.2 Dual Arm
    • 6.1.3 Parallel Link Arm
    • 6.1.4 Others
  • 6.2 By Application
    • 6.2.1 Drug Discovery
    • 6.2.2 Digital Imaging
    • 6.2.3 Genomics & Proteomics
    • 6.2.4 Clinical Diagnostics,
    • 6.2.5 System Biology
    • 6.2.6 Others
  • 6.3 By Geography
    • 6.3.1 North America
    • 6.3.2 Europe
    • 6.3.3 Asia Pacific
    • 6.3.4 Rest of the World

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 Thermo Fisher Scientific Inc.
    • 7.1.2 Hamilton Company
    • 7.1.3 Hudson Robotics, Inc.
    • 7.1.4 Tecan Group
    • 7.1.5 Anton Paar GmbH
    • 7.1.6 Biomrieux SA
    • 7.1.7 Siemens Healthineers AG
    • 7.1.8 Beckman Coulter Inc.
    • 7.1.9 Perkinelmer Inc.
    • 7.1.10 QIAGEN NV
    • 7.1.11 Abbott Laboratories

8 INVESTMENT ANALYSIS

9 FUTURE OF THE MARKET