封面
市場調查報告書
商品編碼
1641975

農業人工智慧 -市場佔有率分析、行業趨勢和統計、成長預測(2025-2030 年)

AI In Agriculture - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 100 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

農業人工智慧市場預計將從 2025 年的 25.5 億美元成長到 2030 年的 70.5 億美元,預測期內(2025-2030 年)的複合年成長率為 22.55%。

農業中的人工智慧-市場-IMG1

這些曳引機使用基於 GPS 的技術來實現自動駕駛、將農具抬離地面、了解農場邊界,並可使用平板電腦進行遠端控制。一批小型自動駕駛曳引機可以使農民的收益提高10%以上,並降低​​農場的人事費用。

關鍵亮點

  • 利用機器學習技術最大限度地提高作物產量正在推動市場的發展。品種選擇是一個艱苦的過程,需要尋找決定水和養分利用、氣候變遷適應性、抗病性、營養價值和更好口感的特定基因。機器學習,特別是深度學習演算法,需要數十年的現場資料來分析不同氣候條件下作物的表現。基於這些資料,我們可以建立機率模型來預測哪些基因最有可能賦予植物有益特性。
  • 臉部辨識技術在牛的應用日益廣泛,推動著市場的發展。透過應用先進的指標,例如牛臉部辨識程序和影像分類,結合身體狀況評分和餵食模式,酪農現在可以單獨監控牛群行為的各個方面。
  • 無人機在農業中的應用有望擴大農業作業的範圍,因為它們可用於使用小型頻譜成像感測器掃描作物,使用機載攝影機創建 GPS 地圖,運輸重型有效載荷,並使用配備熱感成像攝影機。人機(UAV)的使用正在增加,從而推動了對無人機的需求。
  • 然而,資料收集和資料共用對標準化的需求很高,這限制了市場的成長。雖然機器學習、人工智慧和先進的演算法設計正在迅速發展,但有意義的、標記良好的農業資料的收集卻落後了。

農業人工智慧 (AI) 市場趨勢

無人機分析應用領域預計將佔據相當大的市場佔有率

  • 無人機分析和人工智慧在農業領域的融合為最佳化農場營運、降低成本和提高永續性提供了巨大的潛力。透過利用人工智慧的力量分析無人機資料,農民可以做出資料驅動的決策,改善資源配置,並實現更高的生產力。因此,無人機分析有望成為農業市場人工智慧的關鍵驅動力。
  • 無人機配備高解析度攝影機和感測器,可以捕獲有關作物、土壤條件和田地特徵的大量資料。結合人工智慧分析,這些資料可以為農民提供作物健康、營養水平、蟲害和其他影響農業生產力的因素的寶貴見解。
  • 人工智慧無人機分析透過提供有關田地內特定區域的詳細資訊,實現精密農業實踐。透過使用人工智慧演算法分析無人機資料,農民可以識別作物生長、土壤濕度水平和害蟲數量的波動。這允許進行有針對性的干涉,例如精確施用肥料、農藥和灌溉,從而最佳化資源利用並提高作物產量。
  • 配備人工智慧分析功能的無人機可以監測作物的整個生長階段。透過分析無人機影像和感測器資料,人工智慧演算法可以檢測出植物壓力、疾病爆發和營養缺乏的早期徵兆。然後,農民可以採取主動措施,例如調整灌溉、採取適當的治療措施和實施預防措施,以降低風險並最佳化作物健康。
  • 人工智慧無人機分析使農民能夠有效地監控大面積土地。無需進行耗時的人工檢查,人工智慧演算法可以自動分析無人機資料並識別需要注意的區域。這使得操作更加高效,降低了人事費用,並使農民能夠根據準確、及時的資訊做出決策。根據NASSCOM預測,到2025年,資料和人工智慧技術將為印度農業部門帶來約900億美元的收入。在所有領域,到 2025 年人工智慧預計將為印度的 GDP 增加約 5,000 億美元。

預計北美將佔據較大的市場佔有率

  • 北美農業人工智慧(AI)市場是農業技術產業的重要組成部分。北美農業人工智慧市場正在經歷顯著成長。隨著人工智慧技術在農業領域的應用越來越廣泛,預計未來幾年市場將大幅擴張。提高生產力的需求、對精密農業技術的需求不斷成長以及先進基礎設施的可用性等因素促進了市場成長。
  • 北美農民和農業企業正在採用人工智慧技術來提高效率、最佳化資源配置和增強決策流程。人工智慧在該地區農業產業的應用包括精密農業、遙感探測、作物監測、預測分析和自動化農業系統。這些技術幫助農民做出資料驅動的決策,以提高產量、降低成本並降低風險。
  • 技術供應商、農業相關企業、研究機構和新興企業之間的合作是北美農業人工智慧市場的特徵。這些合作將促進創新並開發適合該地區農業部門特定需求的主導解決方案。對人工智慧新興企業的合作和投資進一步促進了市場成長和技術進步。
  • 北美各國政府認知到人工智慧在農業領域的潛力,並正在實施支持性政策和措施。這包括資助計畫、研究津貼和法律規範,以促進農業領域人工智慧的採用和創新。這些努力將為人工智慧市場的成長提供有利環境,促進永續和有彈性農業的市場發展。
  • 2023 年 1 月,美國和歐盟建立合作關係,利用人工智慧 (AI) 改善農業、氣候預報、緊急應變和電網。目前,該合作是在歐盟委員會和歐盟 27 個成員國的執行機構白宮之間進行的。

農業人工智慧 (AI) 產業概覽

  • 農業人工智慧 (AI) 市場由微軟公司、IBM 公司、Granular Inc.、aWhere Inc. 和 Prospera Technologies Ltd. 等主要企業細分。該市場的參與企業正在採用合作、協作和收購等策略來增強其產品供應並獲得永續的競爭優勢。
  • 2023 年 4 月,IBM 與 Texas A&M AgriLife 聯手,為農民提供消費量洞察,以提高農業生產力並降低經濟和環境成本。德州 A&M AgriLife 和 IBM 正在部署和推廣 Liquid Prep,這是一項技術解決方案,可幫助農民決定何時在美國乾旱地區澆水。
  • 2022年5月,AGRA與微軟擴大合作,支持農業數位轉型。 AGRA和微軟在達沃斯簽署了一份合作備忘錄,就透過非洲轉型辦公室開展未來合作展開討論。這兩個組織將利用 2019 年建立的先前夥伴關係的成功經驗來推動 AgriBot 的開發。

其他福利

  • Excel 格式的市場預測 (ME) 表
  • 3 個月的分析師支持

目錄

第 1 章 簡介

  • 研究假設和市場定義
  • 研究範圍

第2章調查方法

第3章執行摘要

第4章 市場洞察

  • 市場概況
  • 產業價值鏈分析
  • 產業吸引力-波特五力分析
    • 購買者/消費者的議價能力
    • 供應商的議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭對手之間的競爭強度
  • COVID-19 對農業人工智慧 (AI) 市場的影響分析

第5章 市場動態

  • 市場促進因素
    • 利用機器學習技術最大限度提高作物產量
    • 牛臉部辨識技術的採用率不斷提高
    • 無人機在農業領域的應用日益廣泛
  • 市場限制
    • 資料收集缺乏標準化

第6章 市場細分

  • 按應用
    • 天氣追蹤
    • 精密農業
    • 無人機分析
  • 按部署
    • 本地
    • 混合
  • 按地區
    • 北美洲
    • 歐洲
    • 亞洲
    • 澳洲和紐西蘭

第7章 競爭格局

  • 公司簡介
    • Microsoft Corporation
    • IBM Corporation
    • Granular Inc.
    • aWhere Inc.
    • Prospera Technologies Ltd.
    • Gamaya SA
    • ec2ce
    • PrecisionHawk Inc.
    • Cainthus Corp.
    • Tule Technologies Inc.

第8章投資分析

第9章 市場機會與未來趨勢

簡介目錄
Product Code: 64248

The AI Market In Agriculture Industry is expected to grow from USD 2.55 billion in 2025 to USD 7.05 billion by 2030, at a CAGR of 22.55% during the forecast period (2025-2030).

AI  In Agriculture - Market - IMG1

The driverless tractor is trending in the market, as these tractors can steer automatically using GPS-based technology, lift tools from the ground, recognize the boundaries of a farm, and be operated remotely using a tablet. A fleet of smaller automated tractors could raise farmer revenue by more than 10 percent and reduce farm labor costs.

Key Highlights

  • Maximizing crop yield using machine learning techniques is driving the market. Species selection is a tedious process of searching for specific genes that determine water and nutrient use effectiveness, adaptation to climate change, disease resistance, nutrient content, or a better taste. Machine learning, in particular deep learning algorithms, takes decades of field data to analyze crop performance in various climates. Based on this data, one can build a probability model to predict which genes will most likely contribute a beneficial trait to a plant.
  • An increase in the adoption of cattle face recognition technology is driving the market. By applying advanced metrics, including cattle facial recognition programs and image classification incorporated with body condition scores and feeding patterns, dairy farms can now individually monitor all behavioral aspects of a group of cattle.
  • The increased use of unmanned aerial vehicles (UAVs) across agricultural farms is driving the market, as the use of drones in the agriculture industry can be used in crop field scanning with compact multispectral imaging sensors, GPS map creation through onboard cameras, heavy payload transportation, and livestock monitoring with thermal-imaging camera-equipped drones, which increases the demand for UAVs.
  • However, the need for standardization is restraining market growth as the need for data collection and data sharing standards is high. Machine learning, artificial intelligence, and advanced algorithm design have moved quickly, but collecting well-tagged, meaningful agricultural data is way behind.

Artificial Intelligence (AI) in Agriculture Market Trends

Drone Analytics Application Segment is Expected to Hold Significant Market Share

  • Integrating drone analytics and AI in agriculture offers tremendous potential for optimizing agricultural operations, reducing costs, and enhancing sustainability. By leveraging the power of AI to analyze drone-captured data, farmers can make data-driven decisions, improve resource allocation, and achieve higher productivity. Therefore, drone analytics is expected to be a significant driver of the AI market in agriculture.
  • Drones with high-resolution cameras and sensors can capture vast amounts of data about crops, soil conditions, and field characteristics. Combined with AI-powered analytics, this data enables farmers to gain valuable insights into crop health, nutrient levels, pest infestations, and other factors influencing agricultural productivity.
  • AI-powered drone analytics enable precision agriculture practices by providing detailed information about specific areas within a field. By using AI algorithms to analyze drone-captured data, farmers can identify variations in crop growth, soil moisture levels, or pest populations. This allows for targeted interventions, such as precise fertilizers, pesticides, or irrigation applications, leading to optimized resource utilization and increased crop yields.
  • Drones equipped with AI-enabled analytics can monitor crops throughout their growth stages. By analyzing drone imagery and sensor data, AI algorithms can detect early signs of plant stress, disease outbreaks, or nutrient deficiencies. Farmers can then take proactive measures, such as adjusting irrigation, applying appropriate treatments, or implementing preventive measures, to mitigate risks and optimize crop health.
  • Drone analytics powered by AI enable farmers to efficiently monitor large agricultural areas. Instead of conducting time-consuming manual inspections, AI algorithms can automatically analyze drone-captured data and identify areas requiring attention. This streamlines operations saves labor costs, and allows farmers to make informed decisions based on accurate and timely information. According to NASSCOM, by 2025, approximately USD 90 billion of value will be added to the agriculture sector through data and AI technologies in India. With all the sectors combined, artificial intelligence is projected to add approximately USD 500 billion to India's GDP by 2025.

North America is Expected to Hold Significant Market Share

  • The North American artificial intelligence (AI) market in agriculture is a significant segment within the larger agricultural technology industry. The North American AI market in agriculture has been experiencing substantial growth. With the increasing adoption of AI technologies in the agricultural sector, the market is expected to expand significantly in the coming years. Factors such as the need for increased productivity, rising demand for precision farming techniques, and the availability of advanced infrastructure contribute to market growth.
  • North American farmers and agricultural businesses embrace AI technologies to improve efficiency, optimize resource allocation, and enhance decision-making processes. AI applications in the region's agriculture industry include precision agriculture, remote sensing, crop monitoring, predictive analytics, and automated farming systems. These technologies help farmers make data-driven decisions, increase yields, reduce costs, and mitigate risks.
  • Collaborations between technology providers, agriculture companies, research institutions, and startups characterize the North American AI market in agriculture. These collaborations foster innovation and the development of AI-driven solutions tailored to the specific needs of the region's agricultural sector. Partnerships and investments in AI startups further contribute to market growth and technological advancements.
  • Governments in North America recognize the potential of AI in agriculture and are implementing supportive policies and initiatives. These include funding programs, research grants, and regulatory frameworks to foster AI adoption and innovation in the agricultural sector. Such initiatives provide a conducive environment for AI market growth and facilitate the development of sustainable and resilient agricultural practices.
  • In January 2023, the United States and the European Union established a collaboration to improve agriculture, climate forecasting, emergency response, and the electric grid through the use of artificial intelligence (AI). The cooperation is now between the European Commission and the White House, the executive arm of the 27-member European Union.

Artificial Intelligence (AI) in Agriculture Industry Overview

  • The artificial intelligence (AI) market in the agriculture market is fragmented with major players like Microsoft Corporation, IBM Corporation, Granular Inc., aWhere Inc., and Prospera Technologies Ltd. Players in the market are adopting strategies such as partnerships, collaborations, and acquisitions to enhance their product offerings and gain sustainable competitive advantage.
  • In April 2023, IBM and Texas A&M AgriLife collaborated to provide farmers with water consumption insights, which can boost agricultural productivity while lowering economic and environmental expenses. Texas A&M AgriLife and IBM will deploy and grow Liquid Prep, a technology solution that helps farmers decide "when to water" in dry parts of the United States.
  • In May 2022, AGRA and Microsoft expanded their collaboration to help with the digital agricultural transformation. AGRA and Microsoft signed an MoU in Davos for future collaboration through its Africa Transformation Office. The organizations will leverage their success from a previous partnership started in 2019, which led to the development of the AgriBot.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Value Chain Analysis
  • 4.3 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.3.1 Bargaining Power of Buyers/Consumers
    • 4.3.2 Bargaining Power of Suppliers
    • 4.3.3 Threat of New Entrants
    • 4.3.4 Threat of Substitute Products
    • 4.3.5 Intensity of Competitive Rivalry
  • 4.4 Analysis on the impact of COVID-19 on the Artificial Intelligence (AI) Market in Agriculture

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Maximize Crop Yield Using Machine Learning technique
    • 5.1.2 Increase in the Adoption of Cattle Face Recognition Technology
    • 5.1.3 Increase Use of Unmanned Aerial Vehicles (UAVs) Across Agricultural Farms
  • 5.2 Market Restraints
    • 5.2.1 Lack of Standardization in Data Collection

6 MARKET SEGMENTATION

  • 6.1 By Application
    • 6.1.1 Weather Tracking
    • 6.1.2 Precision Farming
    • 6.1.3 Drone Analytics
  • 6.2 By Deployment
    • 6.2.1 Cloud
    • 6.2.2 On-premise
    • 6.2.3 Hybrid
  • 6.3 By Geography
    • 6.3.1 North America
    • 6.3.2 Europe
    • 6.3.3 Asia
    • 6.3.4 Australia and New Zealand

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 Microsoft Corporation
    • 7.1.2 IBM Corporation
    • 7.1.3 Granular Inc.
    • 7.1.4 aWhere Inc.
    • 7.1.5 Prospera Technologies Ltd.
    • 7.1.6 Gamaya SA
    • 7.1.7 ec2ce
    • 7.1.8 PrecisionHawk Inc.
    • 7.1.9 Cainthus Corp.
    • 7.1.10 Tule Technologies Inc.

8 INVESTMENT ANALYSIS

9 MARKET OPPORTUNITIES AND FUTURE TRENDS