封面
市場調查報告書
商品編碼
1645135

資料湖 -市場佔有率分析、產業趨勢與統計、成長預測(2025-2030)

Data Lakes - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 100 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

預測期內,資料湖市場預計將以 22.40% 的複合年成長率成長。

資料湖-市場-IMG1

資料湖是一個中央儲存庫,資料存儲大量資料、資料、半結構化和非結構化資料,對於希望從資料中獲取有價值見解的組織來說,它是一項寶貴的資產。

關鍵亮點

  • 巨量資料的興起和對高級分析解決方案的需求增加了對資料湖的需求。公司希望有效率地儲存和處理大量不同的資料。
  • 由於物聯網 (IoT) 的採用而導致的資料快速成長是資料湖市場的主要驅動力。物聯網設備會產生大量資料,通常是即時的。資料湖可以處理大量資料湧入,而不會影響效能。
  • 資料湖使組織能夠利用高級分析功能在當今資料主導的商業環境中獲得競爭優勢。隨著企業不斷認知到資料主導洞察的重要性,對具有高級分析功能的資料湖的需求預計將會成長。
  • 緩慢的入職和資料整合挑戰是限制市場資料湖成長和採用的主要因素。將來自各種來源的資料整合到資料湖中是一項複雜且耗時的作業。組織可能以不同的格式、資料庫和系統儲存資料,需要付出巨大的努力來協調和有效地整合資料。

資料湖市場趨勢

BFSI 終端用戶部分預計將佔據主要市場佔有率

  • BFSI 部門產生和處理大量資料,包括客戶交易資料、帳戶資訊、金融市場資料、保險索賠、信用評分等。資料湖為 BFSI 組織提供了可擴展且靈活的解決方案來管理、處理和分析大量不同的資料。
  • 資料湖使 BFSI 組織能夠整合和分析來自多個來源的客戶資料,包括銀行交易、信用卡使用、線上交易等。這種統一的視圖可幫助您深入了解客戶的行為、偏好和需求,從而支援個人化的定位和行銷。
  • 資料湖是各種類型資料的集中存儲,包括交易資料、使用者行為模式、歷史記錄等。透過應用進階分析和機器學習演算法,BFSI 組織可以更有效地偵測和防止詐欺活動。
  • 據印度儲備銀行 (RBI) 稱,2023 會計年度,印度全國發生了 13,000 多起銀行詐騙案件。這比上年度有所成長,並扭轉了過去十年的趨勢。銀行詐騙總額從 1.38 兆印度盧比(170 億美元)下降到 3,020 億印度盧比(36.8 億美元)。
  • BFSI 部門面臨各種風險,包括信用風險、市場風險和營運風險。資料湖使銀行和保險公司能夠匯總和分析與風險相關的資料,以便做出明智的決策、管理風險敞口並遵守監管要求。
  • 許多公司正在推出和開發銀行和金融解決方案。 2022 年 9 月,為 Web3 公司創建了第一個金融資料湖的 Tres 宣布已在由 Bold Start Ventures主導的種子輪融資中籌集了 760 萬美元,其他參投方包括 F2、Mantis、New Form、The Chainsmokers、Blockdaemon Ventures、Kenetic 和 Alchemy。

預計北美將佔據較大的市場佔有率

  • 北美是資料湖採用的主要地區之一,其推動因素有很多,包括大量精通技術的行業、雲端基礎設施以及對資料主導決策的高度關注。
  • 北美是許多資料密集型行業的所在地,包括 IT、通訊、BFSI、醫療保健、零售和製造業。這些產業產生的大量資料正在推動對資料湖作為可擴展且靈活的資料儲存和處理解決方案的需求。
  • 雲端運算在該地區已十分成熟並被廣泛採用。雲端基礎的資料湖具有許多優勢,包括成本效益、可擴展性和易於部署,使其成為各種規模企業的理想選擇。
  • 北美公司一直是高階分析和人工智慧(AI)技術的早期採用者。資料湖為大型多樣化資料集提供了集中儲存庫,為這些資料驅動的應用程式提供了基礎。
  • 物聯網(IoT)和巨量資料技術的發展正在該地區產生大量不同的資料。資料湖非常適合處理來自物聯網設備和巨量資料來源的複雜和大量資料。

資料湖產業概覽

資料湖市場由微軟公司、亞馬遜公司、凱捷公司、甲骨文公司和 Teradata 公司等主要企業細分。市場參與企業正在採取聯盟和收購等策略來增強其產品供應並獲得永續的競爭優勢。

2024 年 6 月企業資料管道解決方案供應商 Fivetran 宣布其最新產品 Fivetran 託管資料湖服務正式上市。新服務旨在透過自動化和簡化流程來消除與管理資料湖相關的重複任務。這使得客戶可以專注於使用資料進行產品開發。目前支援Amazon S3、Azure Data Lake Storage(ADLS)、Microsoft OneLake,未來將支援Google Cloud。

2023 年 12 月 Panther Labs 是大規模檢測和回應網路安全創新的領導者,宣布了其最新功能:安全資料湖搜尋和 Splunk 整合。這些進步代表著我們在解決當今以雲端為中心的世界的安全挑戰方面邁出了重要一步。 Panther 整合將現代安全資料湖的成本效益與傳統 SIEM 介面的易用性結合在一起。這使安全團隊能夠識別和應對威脅,為廣泛分佈的雲端操作提供額外的防禦層。

其他福利

  • Excel 格式的市場預測 (ME) 表
  • 3 個月的分析師支持

目錄

第 1 章 簡介

  • 研究假設和市場定義
  • 研究範圍

第2章調查方法

第3章執行摘要

第4章 市場洞察

  • 市場概況
  • 產業吸引力-波特五力分析
    • 供應商的議價能力
    • 買家的議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭對手之間的競爭
  • 產業價值鏈分析
  • COVID-19 工業影響評估

第5章 市場動態

  • 市場促進因素
    • 透過物聯網實現資料激增
    • 需要進階分析
  • 市場限制
    • 資料湖存取和資料整合延遲

第6章 市場細分

  • 透過奉獻
    • 解決方案
    • 按服務
  • 按部署
    • 雲端基礎
    • 本地
  • 按行業
    • 資訊科技/通訊
    • BFSI
    • 醫療
    • 零售
    • 製造業
    • 其他最終用戶產業
  • 按地區
    • 北美洲
      • 美國
      • 加拿大
    • 歐洲
      • 英國
      • 德國
      • 法國
      • 義大利
    • 亞洲
      • 中國
      • 日本
      • 印度
    • 澳洲和紐西蘭
    • 拉丁美洲
      • 墨西哥
      • 巴西
      • 阿根廷
    • 中東和非洲
      • 阿拉伯聯合大公國
      • 沙烏地阿拉伯
      • 南非

第7章 競爭格局

  • 公司簡介
    • Microsoft Corporation
    • Amazon.com Inc.
    • Capgemini SE
    • Oracle Corporation
    • Teradata Corporation
    • SAP SE
    • IBM Corporation
    • Solix Technologies Inc.
    • Informatica Corporation
    • Dell EMC
    • Snowflake Computing Inc.
    • Hitachi Data Systems

第8章投資分析

第9章:市場的未來

簡介目錄
Product Code: 62344

The Data Lakes Market is expected to register a CAGR of 22.40% during the forecast period.

Data Lakes - Market - IMG1

A data lake is a central repository that stores large volumes of raw, structured, semi-structured, and unstructured data, making it a valuable asset for organizations seeking to extract valuable insights from their data.

Key Highlights

  • The rise of big data and the need for advanced analytics solutions fueled the demand for data lakes. Organizations wanted to store and process vast amounts of diverse data types efficiently.
  • The proliferation of data due to adopting the Internet of Things (IoT) has been a significant driver of the data lakes market. IoT devices generate an enormous volume of data, often in real time. Data lakes can handle this massive influx of data without compromising performance.
  • Data lakes enable organizations to leverage advanced analytics capabilities and gain a competitive advantage in today's data-driven business landscape. As businesses continue to recognize the importance of data-driven insights, the demand for data lakes with advanced analytics features is expected to grow.
  • Slow onboarding and data integration challenges have been significant factors restraining the growth and adoption of data lakes in the market. Integrating data from various sources into a data lake can be complex and time-consuming. Organizations may store data in different formats, databases, and systems, requiring significant effort to harmonize and consolidate the data effectively.

Data Lake Market Trends

BFSI End-user Vertical Segment is Expected to Hold Significant Market Share

  • The BFSI sector generates and handles vast amounts of data, including customer transaction data, account information, financial market data, insurance claims, credit scores, etc. Data lakes provide BSI organizations with a scalable and flexible solution for managing, processing, and analyzing this massive volume of diverse data.
  • Data lakes enable BFSI organizations to consolidate and analyze customer data from multiple sources, such as banking transactions, credit card usage, and online interactions. This consolidated view helps gain valuable insights into customer behavior, preferences, and needs, facilitating personalized, targeted marketing.
  • Data lakes are a central repository for diverse data types, including transactional data, user behavior patterns, and historical records. By applying advanced analytics and machine learning algorithms, BFSI organizations can detect and prevent fraudulent activities more effectively.
  • According to the Reserve Bank of India, In the financial year 2023, the Reserve Bank of India (RBI) reported more than 13 thousand bank fraud cases across India. This was an increase compared to the previous year and turned around the last decade's trend. The total value of bank frauds decreased from INR 1.38 trillion (USD 0.017 trillion) to INR 302 billion (USD 3.68 billion).
  • The BFSI Sector faces various risks, including credit, market, and operational risks. Data lakes allow banks and insurance companies to aggregate and analyze risk-related data to make informed decisions, manage exposures, and comply with regulatory requirements.
  • Many companies are launching and developing banking and finance solutions. In September 2022, Tres, the company that made the first financial data lake for Web3 enterprises, announced that it had raised USD 7.6 million in a seed phase led by bold start ventures, with help from F2, Mantis, New Form, The Chainsmokers, Blockdaemon Ventures, Kenetic, and Alchemy.

North America is Expected to Hold Significant Market Share

  • North America is one of the leading regions in data lake adoption, driven by various factors, including numerous tech-savy industries, cloud infrastructure, and a strong focus on data-driven decision-making.
  • North America has many data-intensive industries, such as information technology, telecom, BFSI, healthcare, retail, and manufacturing. The massive volume of data these industries generate drives the demand for data lakes as a scalable and flexible data storage and processing solution.
  • Cloud computing is well-established and widely adopted in this region. Cloud-based data lakes offer numerous advantages, including cost-efficiency, scalability, and ease of implementation, making them an attractive choice for businesses of all sizes.
  • North American enterprises have been early adopters of advanced analytics and artificial intelligence (AI) technologies. Data lakes provide a foundation for these data-driven applications by offering a centralized repository for diverse and large datasets.
  • The growth of the Internet of Things (IoT) and big data technologies in the region generate massive amounts of diverse data. Data lakes are well suited to handle the complexity and volume of data from IoT devices and big data sources.

Data Lake Industry Overview

The Data Lakes Market is fragmented with major players like Microsoft Corporation, Amazon.com Inc., Capgemini SE, Oracle Corporation, and Teradata Corporation. Players in the market are adopting strategies such as partnerships and acquisitions to enhance their product offerings and gain sustainable competitive advantage.

June 2024: Fivetran, a provider of data pipeline solutions for enterprises, has announced the general availability of its latest product, the Fivetran Managed Data Lake Service. This new service is designed to eliminate the repetitive tasks associated with managing data lakes by automating and streamlining the process. This allows clients to focus on leveraging their data for product development. Currently, the service supports Amazon S3, Azure Data Lake Storage (ADLS), and Microsoft OneLake, with future support for Google Cloud on the roadmap.

December 2023: Panther Labs, a leader in cybersecurity innovation for large-scale detection and response, announced the launch of its latest capabilities: Security Data Lake Search and Splunk Integration. These advancements signify a major step forward in addressing security challenges in today's cloud-centric environment. Panther's integration combines the cost-efficiency of modern security data lakes with the user-friendly nature of traditional SIEM interfaces. This enables security teams to identify and respond to threats, strengthening their defenses for extensive, decentralized cloud operations.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.2.1 Bargaining Power of Suppliers
    • 4.2.2 Bargaining Power of Buyers
    • 4.2.3 Threat of New Entrants
    • 4.2.4 Threat of Substitutes
    • 4.2.5 Intensity of Competitive Rivalry
  • 4.3 Industry Value Chain Analysis
  • 4.4 Assessment of Impact of COVID-19 on the Industry

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Proliferation of Data due to the Adoption of IoT
    • 5.1.2 Need for Advanced Analytic Capabilities
  • 5.2 Market Restraints
    • 5.2.1 Slow Onboarding and Data Integration of Data Lakes

6 MARKET SEGMENTATION

  • 6.1 By Offering
    • 6.1.1 Solution
    • 6.1.2 Service
  • 6.2 By Deployment
    • 6.2.1 Cloud-based
    • 6.2.2 On-premise
  • 6.3 By End-user Vertical
    • 6.3.1 IT and Telecom
    • 6.3.2 BFSI
    • 6.3.3 Healthcare
    • 6.3.4 Retail
    • 6.3.5 Manufacturing
    • 6.3.6 Other End-user Verticals
  • 6.4 By Geography
    • 6.4.1 North America
      • 6.4.1.1 United States
      • 6.4.1.2 Canada
    • 6.4.2 Europe
      • 6.4.2.1 United Kingdom
      • 6.4.2.2 Germany
      • 6.4.2.3 France
      • 6.4.2.4 Italy
    • 6.4.3 Asia
      • 6.4.3.1 China
      • 6.4.3.2 Japan
      • 6.4.3.3 India
    • 6.4.4 Australia and New Zealand
    • 6.4.5 Latin America
      • 6.4.5.1 Mexico
      • 6.4.5.2 Brazil
      • 6.4.5.3 Argentina
    • 6.4.6 Middle East and Africa
      • 6.4.6.1 United Arab Emirates
      • 6.4.6.2 Saudi Arabia
      • 6.4.6.3 South Africa

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 Microsoft Corporation
    • 7.1.2 Amazon.com Inc.
    • 7.1.3 Capgemini SE
    • 7.1.4 Oracle Corporation
    • 7.1.5 Teradata Corporation
    • 7.1.6 SAP SE
    • 7.1.7 IBM Corporation
    • 7.1.8 Solix Technologies Inc.
    • 7.1.9 Informatica Corporation
    • 7.1.10 Dell EMC
    • 7.1.11 Snowflake Computing Inc.
    • 7.1.12 Hitachi Data Systems

8 INVESTMENT ANALYSIS

9 FUTURE OF THE MARKET