石腦油替代品 - 煉油廠和石腦油裂解裝置中化石原料的替代:技術和市場、現狀和前景
市場調查報告書
商品編碼
1491794

石腦油替代品 - 煉油廠和石腦油裂解裝置中化石原料的替代:技術和市場、現狀和前景

Alternative Naphtha - Replacing Fossil-Based Feedstocks in Refineries and Naphtha Crackers: Technologies and Market, Status and Outlook

出版日期: | 出版商: Nova-Institut GmbH | 英文 188 Pages | 訂單完成後即時交付

價格

化學工業為了去石化,尋找化石石腦油的替代原料極為重要。 "替代石腦油" 概念利用現有的煉油廠、蒸汽裂解和化學工業基礎設施,用三種再生碳源 - 二氧化碳(CO2)、生物質和回收 - 取代部分化石原料、原油和石腦油。

本報告分析了替代石腦油生產方法的開發利用現狀和未來前景,描述了將再生碳引進煉油廠和蒸汽裂解過程作為化石原料替代品的方法和相關技術,以及市場關係。分析用戶數量、引進規模等。

本報告由188頁正文、22個表格和48個插圖組成,提供了石腦油替代來源產能的全面視圖。

目錄

第1章 執行摘要

第2章 簡介

  • 石化精煉、石腦油和蒸汽裂解概述
    • 石腦油
    • 煉油廠和蒸汽裂解 - 未來前景
  • "替代石腦油" 概述
    • 替代石腦油之路
    • 原料
    • 政策概述
    • 質量平衡與歸因方法 - 概述

第3章 替代生物基石腦油

  • 概述與總結
  • HVO/HEFA 和協同處理的原​​料
  • 透過協同處理生產再生生物石腦油
    • 技術:利用現有煉油廠資產協同處理油脂
    • 協同處理能力
  • 使用 HVO/HEFA 生產再生生物基石腦油
    • 簡介
    • 化學與技術概述
    • 技術:依公司、技術授權人分類
    • 用於蒸汽裂解的再生(生物基)石腦油
    • HVO/HEFA 處理能力
    • 生產用於蒸汽裂解的再生(生物基)石腦油
    • 向化學工業供應原料的主要 HVO/HEFA 和協同處理公司概覽
    • 石腦油蒸氣裂解的生物基價值鏈

第4章 熱解/催化熱解/氣化替代石腦油

  • 簡介
  • 透過(熱/催化)熱解塑膠和輪胎廢料來取代石腦油
    • 摘要
    • 技術
    • 能夠利用塑膠輪胎的熱解油生產替代石腦油
    • 塑膠熱解與石腦油替代品概述
    • 製造商與特定業務合作夥伴的塑膠熱解能力
    • 廢輪胎熱解:背景資訊
    • 製造商和主要客戶的輪胎熱解能力
    • 輪胎熱解能力與石腦油替代品概述
    • 熱解設備企業與煉化企業的主要合作關係
  • 透過生物質熱解(熱解或催化)取代石腦油
    • 摘要
    • 生產能力
  • 透過生物質和含塑膠廢棄物氣化來取代石腦油
    • 摘要
    • 技術
    • 容量

第5章 透過碳捕獲與利用(CCU)取代再生石腦油

  • 簡介
  • 技術概述
    • 合成氣生產與合成氣技術供應商
    • 費托碳氫化合物
  • 生產能力
    • 製造商簡介

第6章 酒精噴射燃料方式替代石腦油

縮寫詞列表

術語表

For the defossilisation of the chemical industry, it is crucial to find alternatives to fossil-based naphtha. The "alternative naphtha" concept makes use of existing refinery, steam cracking and chemical industry infrastructure where a proportion of fossil-based feedstocks - crude oil or fossil-based naphthas can be replaced by renewable carbon alternatives derived from the three sources of renewable carbon: CO2, biomass and recycling.

This new report by nova-Institute presents an analysis of the routes, associated technologies, market players and volumes by which renewable carbon can be introduced to refinery and steam cracking operations as replacement for fossil based feedstocks.

With 188 pages, 22 tables and illustrated by 48 graphics the report provides a comprehensive view on the growth in capacity for these alternative sources of naphtha as chemical industry feedstock, production routes and the need for "upgrading", key companies and partnerships and the regulatory environment.

Table of Contents

1. Executive Summary

2. Introduction

  • 2.1. Introduction to the petrochemical refinery, naphtha and steam cracking
    • 2.1.1. Naphtha
    • 2.1.2. Refineries & steam cracking - the future
  • 2.2. Introduction to "Alternative Naphtha"
    • 2.2.1. Routes to alternative naphtha
    • 2.2.2. Feedstocks
    • 2.2.3. Policy overview
    • 2.2.4. Mass balance & attribution approach - overview

3. Alternative bio-based naphtha

  • 3.1. Introduction & Summary
  • 3.2. Feedstocks for HVO/HEFA & for co-processing
  • 3.3. Renewable bio-based naphtha via co-processing
    • 3.3.1. Technology - co-processing of fats/oils etc. via existing refinery assets
    • 3.3.2. Co-processing capacity
  • 3.4. Renewable bio-based naphtha via HVO/HEFA
    • 3.4.1. Introduction
    • 3.4.2. Description of the chemistry and technology
    • 3.4.3. Technologies by company and technology licensor
    • 3.4.4. Renewable (bio-based) naphtha for steam cracking
    • 3.4.5. Capacity for HVO/HEFA processing
    • 3.4.6. Production of renewable (bio-based) naphtha for steam cracking
    • 3.4.7. Brief profiles of key HVO/HEFA & co-processing companies providing feedstock to the chemical industry
    • 3.4.8. Bio-attributed value chains via steam cracking of naphtha

4. Alternative Naphtha via Thermal or Catalytic Pyrolysis or Gasification

  • 4.1. Introduction
  • 4.2. Alternative naphtha via (thermal or catalytic) pyrolysis of plastics & tyre wastes
    • 4.2.1. General description
    • 4.2.2. Technology
    • 4.2.3. Capacity for alternative naphtha from pyrolysis oil from plastics and tyres
    • 4.2.4. Plastics pyrolysis & alternative naphtha summary
    • 4.2.5. Plastic pyrolysis capacities by producer with identified offtake partners
    • 4.2.6. Pyrolysis of waste tyres - background
    • 4.2.7. Tyre Pyrolysis capacities by producer and identified offtake partners
    • 4.2.8. Tyre Pyrolysis Capacities & Alternative Naphtha Summary
    • 4.2.9. Key Partnerships in the Industry between Pyrolysers and Refining & Chemicals Companies
  • 4.3. Alternative naphtha via (thermal or catalytic) pyrolysis of biomass
    • 4.3.1. Introduction
    • 4.3.2. Capacity
  • 4.4. Alternative naphtha via gasification of biomass and/or of plastic containing wastes
    • 4.4.1. Introduction
    • 4.4.2. Technology
    • 4.4.3. Capacity

5. Alternative renewable naphtha via carbon capture & utilisation (CCU)

  • 5.1. Introduction
  • 5.2. Technology Overview
    • 5.2.1. Syngas production & syngas technology providers
    • 5.2.2. Fischer-Tropsch Hydrocarbons
  • 5.3. Capacity
    • 5.3.1. Producer profiles

6. Alternative naphtha via "alcohol to jet"

List of Acronyms

Glossary of Terms

List of Figures

  • Figure 1: Routes to alternative naphtha
  • Figure 2: World production of renewable (bio-based) steam cracker feedstock from HVO/HEFA, 2022-2026, kt
  • Figure 3: Summary of number of operating plastics pyrolysis plants and largest project size by region, 2022-2026, kt/year
  • Figure 4: World capacity to produce PyOil from waste plastics for partnership projects, 2022-2026, kt/year
  • Figure 5: Capacity build-up for CO2 based hydrocarbon via FT synthesis, 2022-2030, kt/year
  • Figure 6: Three sources of renewable carbon as feedstock for alternative naphtha
  • Figure 7: Classical integration of refinery and petrochemical operations
  • Figure 8: Routes to alternative naphtha
  • Figure 9: Principle of mass balance & attribution approach
  • Figure 10: Mass balance & attribution with fuel-use excluded
  • Figure 11: Routes to alternative naphtha - routes 1 & 2
  • Figure 12: Capacity for HVO/HEFA processing and co-processing worldwide, 2020-2026, kt/year
  • Figure 13: Triglycerides - showing ester functional link
  • Figure 14: Simplified refinery, steam cracker & aromatics complex configuration, to show integration of co-processing
  • Figure 15: Co-processing capacity by region, 2020-2026, kt/year
  • Figure 16: Triglycerides example
  • Figure 17: FFA (Free Fatty Acid), Oleic Acid
  • Figure 18: Schematic block diagram for HVO/HEFA process
  • Figure 19: Hydrotreating reaction pathways (Figure 18 Step 1): Adapted from Sulzer
  • Figure 20: Hydrocracking & isomerisation: adapted from source Topsoe
  • Figure 21: Simplified flow diagram for the HVO/HEFA process
  • Figure 22: Routes to alternative naphtha - route 2
  • Figure 23: Simplified refinery, steam cracker & aromatics complex configuration, to show integration of co-processing and of renewable naphtha
  • Figure 24: Capacity build-up for HVO/HEFA by region, 2020-2026, kt/year
  • Figure 25: Capacity for HVO/HEFA processing and co-processing worldwide, 2020-2026, kt/year
  • Figure 26: Production of renewable (bio-based) steam cracker feedstock from HVO/HEFA by region, 2020-2026, kt
  • Figure 27: Bio-attributed value chains via steam cracking of naphtha
  • Figure 28: Routes to alternative naphtha - routes 3A & 3B
  • Figure 29: Schematic diagram of conventional refinery including steam cracking and aromatics processing
  • Figure 30: Process diagram showing the inputs and outputs of different secondary valuable materials (SVM) from the pyrolysis process.
  • Figure 31: Pyrolysis process condition and typical yields from Pawelczyk et al. (2022)
  • Figure 32: Typical fossil fuel hydroprocessing
  • Figure 33: Hydrotreating process for pyrolysis oils from plastics
  • Figure 34: Hydrocracking and isomerisation
  • Figure 35: Summary of number of operating plastics pyrolysis plants and largest project size by region, 2022-2026, kt/year
  • Figure 36: Plastics pyrolysis waste processing capacity by region for partnership projects, 2022-2026, kt/year
  • Figure 37: Capacity to produce pyrolysis oil from waste plastics by region for partnership projects, 2022-2026, kt/year
  • Figure 38: EOL options for discarded tyres for several countries (in million tonnes)
  • Figure 39: Capacity to process tyre crumb, 2022-2026, kt/year
  • Figure 40: Capacity to produce pyrolysis oil for chemicals use, 2022-2026, kt/year
  • Figure 41: Routes to alternative naphtha - routes 3A & 3B - pyrolysis of biomass
  • Figure 42: Routes to alternative naphtha - route 4
  • Figure 43: Block flow diagram for fuels & naphtha via biomass gasification
  • Figure 44: Routes to alternative naphtha - route 5
  • Figure 45: Global carbon demand for chemicals and materials
  • Figure 46: Block flow diagram for fuels & naphtha via carbon capture and utilisation
  • Figure 47: Capacity build-up by region for CO2 based hydrocarbon via FT synthesis, 2022-2030, kt/year
  • Figure 48: Ethanol to jet upgrading steps

List of Tables

  • Table 1: Quality parameters for different HVO feedstocks
  • Table 2: Inlet product specifications for different HVO technology providers
  • Table 3: EMEA capacity to co-process bio-based feedstocks (excluding pyrolysis oil from biomass or waste plastics), 2022-2026, kt/year
  • Table 4: Rest-of-World capacity to co-process bio-based feedstocks (excluding pyrolysis oil from biomass or waste plastics), 2022-2026, kt/year
  • Table 5: HVO/HEFA technology by company & licensor
  • Table 6: Americas capacity to produce HVO/HEFA products, 2022-2026, kt/year
  • Table 7: EMEA capacity to produce HVO/HEFA products, 2022-2026, kt/year
  • Table 8: Rest of world capacity to produce HVO/HEFA products, 2022-2026, kt/year
  • Table 9: Estimated production of alternative (bio-based) naphtha and renewable diesel from HVO/HEFA processed as feedstock to steam crackers (excluding co-processing) worldwide, 2020-2026, kt
  • Table 10: Properties of pyrolysis oils of differing origins
  • Table 11: Americas plastic pyrolysis capacities by producer with identified offtake partners by feedstock volume, 2022-2026, kt/year
  • Table 12: EMEA (Europe, Middle East & Africa) plastic pyrolysis capacities by producer with identified offtake partners by feedstock volume, 2022-2026, kt/year
  • Table 13: Asia plastic pyrolysis capacities by producer with identified offtake partners by feedstock volume 2022-2026, kt
  • Table 14: Average composition of fuel-efficient passenger car and truck tyres.
  • Table 15: Selected properties for tyre pyrolysis oil. Source: Topsoe
  • Table 16: Tyre pyrolysis oil properties in comparison with requirements for steam cracker and refinery feeds. Source: Topsoe
  • Table 17: Tyre pyrolysis capacities by producer, 2022-2026, kt/year
  • Table 18: Capacity to produce output products from thermal or catalytic pyrolysis of biomass, 2022-2026, kt/year
  • Table 19: Americas capacity to produce fuels & naphtha via biomass gasification, 2022-2026, kt/year
  • Table 20: Europe capacity to produce fuels & naphtha via biomass gasification, 2022-2026, kt/year
  • Table 21: Companies developing and commercialising CO2-based CO or syngas via chemical conversion (rWGS)
  • Table 22: Companies developing and commercialising CO2-based hydrocarbon (synthetic crude oil) based on Fischer-Tropsch synthesis - capacities 2022-2026, tonnes/year