光無線通訊(OWC)的實用的方面 - 技術,用途,市場
市場調查報告書
商品編碼
1507979

光無線通訊(OWC)的實用的方面 - 技術,用途,市場

Practical Aspects of Optical Wireless Communications - Technologies, Applications and Markets

出版日期: | 出版商: PracTel, Inc. | 英文 151 Pages | 商品交期: 最快1-2個工作天內

價格

光無線通訊 (OWC) 系統利用發射器和接收器之間的自由空間光鏈路(空氣或真空)來傳輸資料。由於多種因素,OWC技術比RF技術具有優勢。這些因素包括但不限於高能源效率、廣泛的不受監管的頻寬、固有安全性和低經濟成本。

OWC 技術補充並增強了 5G 無線通訊。透過利用廣泛的可用光譜,可以高速且安全地傳輸大量資料。

光無線系統以其超高頻寬、通訊距離遠、資料保密性強等先天優勢,將成為未來通訊網路基礎設施的重要組成部分。光無線通訊預計將在 6G、WLAN、AR/VR 等網路營運中發揮關鍵作用。光學無線系統的設計和調諧也是一個開放的話題。

本報告對光無線通訊 (OWC) 進行了調查和分析,並提供了各項技術、標準化、相關專利、公司等詳細資訊。

目錄

第1章 簡介

  • 報告的目標
    • 電磁光頻譜
    • OWC級
  • OWC技術
  • 範圍
  • 調查手法
  • 主要讀者

第2章 LED的特性

  • 概要
  • 頻譜
  • LED的種類
  • LED調變
    • 限制
  • LED的演進
    • 概要
    • 優點
    • 市場特徵
    • 要素:新的法規

第3章 可見光通訊(VLC)

  • 概要
    • VLC的促進因素
    • 組織 -案例
  • 詳細內容
    • 通訊流通管道
    • 發射器
    • 接收器
    • 主要的特徵
    • 利用案例
  • 課題

第4章 Light Fidelity(LiFi)

  • 概要
  • 差異 - LiFi和VLC
  • LiFi聯盟
  • Light Communications Alliance
  • LiFi的限制

第5章 光相機通訊(OCC)

  • 概要
  • 促進因素
  • 原理
  • 影像感測器
    • 詳細內容
  • 用途
    • Deep學習為基礎的光相機通訊

第6章 自由空間光纖

  • 概要
    • 背景
  • 主要的特徵
  • 保護
  • 主要的使用案例
    • 必要條件
    • 衛星間鏈接
    • 建築物內通訊
    • 建築物間通訊
    • 摘要
  • FSF通訊的優點與限制:摘要
    • 天氣要素
    • 建築物搖動
    • 大氣衰減
  • 設計上的問題點
    • 方向
    • 主要的使用案例
    • 功能強化
  • 多樣化

第7章 OWC的標準化

  • VLC/LiFi/OCC/FSF標準的開發
    • IEEE - 802.15.7-2018
    • IEEE - 802.11bb
    • IEEE- 802.15.13-2023
    • IEEE 802.15.7m - OCC OCC的標準化
    • JEITA(電子情報技術產業協會)標準
    • 可見光通訊協會(VLCA)
    • ECMA 397-2010
    • ITU G.9991
    • ITU Report ITU-R SM.2422-0(2018年6月)
    • FSF ITU G.640
    • FSF ITU-R P.1814-2007
    • FSF ARIB STD-T50(光無線LAN系統)v4-2009

第8章 OWC產業

  • VLC/LiFi/OCC產業
    • Casio
    • Firefly
    • Fraunhofer IPMS
    • Global LiFI Tech
    • Lightbee
    • Nakagawa Laboratories
    • NEC
    • OptiPulse
    • Outstanding Technology
    • Oledcomm
    • PureVLC-PureLiFi
    • Qualcomm
    • Renesas
    • Signify (Philips Lighting)
    • Supreme Architecture
    • VLNComm
    • Zero1
  • FSF產業
    • AIRLINX Communications
    • BridgeComm
    • CableFree
    • CBL
    • Collinear
    • Dailianxu Engineering Company
    • fSONA
    • Guilin
    • Plaintree
    • SA Photonics (a CASI Company)
    • Tesat
    • Transcelestial
    • Taara

第9章 OWC市場

  • 要素
  • 估計 - VLC/LiFi/OCC市場
  • FSF市場
    • 概要
    • 推動市場要素和使用案例
    • 市場區隔
    • 競爭
    • 預測
  • VLC和FSF

第10章 問題點

第11章 5G預測

  • atto電池單元
    • 電池單元結構
    • 混合:OWC/RF
  • OWC網路的優點
    • OWC自動駕駛車

第12章 結論

添加資料1:OWC相關專利調查(2018年~2024年)

Optical Wireless Communications (OWC) systems utilize the free-space optical links (air or vacuum) between the transmitter and the receiver to transmit data. OWC technology has an edge over the RF technology due to various factors. These factors include but are not limited to high energy efficiency, widely spread bandwidth, which is free from regulation, intrinsic security, and low economical costs.

OWC technologies complement and enhance 5G wireless communications. By utilizing its greater available spectrum, light can be used to deliver large amounts of data at fast speeds and with high security.

With the inherent advantages, such as ultra-high bandwidth, long communication distance, and strong data privacy, optical wireless systems will become an essential building block of the future communication network infrastructure. Optical wireless communications will play an important role in network operations for 6G, WLANs, AR/VR, and beyond. Optical wireless system design and coordination is also an open topic.

The report researches a wide spectrum of OWC - related subjects and concentrates on:

  • VLC - Visible Light Communication
  • LiFi - Light Fidelity
  • OCC - Optical Camera Communications
  • FSF - Free Space Fiber
  • Other.

The differences among these technologies are very specific. The unique characteristic of VLC is the use of visible light as communication media. A LiFi system must support seamless mobility, bidirectional communication, and point-to-multipoint, as well as multipoint-to-point communications. Only the OCC system uses camera or image sensor as a receiver among all the OWC technologies. Due to the narrow beams of focused light from a LD transmitter, a FSF system can form a very long distance as well as a high-data-rate communication link.

  • The report addresses Light Emitting Diodes (LEDs) technologies and markets. LEDs, in the near future, will be a dominate source of illumination; and used also as a transmitting device. The OWC LED-based channels promise to deliver high-speed data in office, home and other environments with high signal-to-noise ratio, and minimum infrastructure expenses.
  • The report is analyzing the emerging OWC, and particular:

Industry

The survey of more than 40 companies' profiles shows the industry strength and growth.

Economics

The markets specifics of VLC/LiFi/OCC and FSF are evaluated (2024-2028).

Technologies

The detailed analysis of OWC technologies, their strengths and weaknesses, including the latest developments is provided. The report is addressing the specifics of each OWC technology and compare their functionalities.

Standardization

An important prerequisite for the large-scale adoption of OWC technologies is the availability of standards. In this context, IEEE 802.15, IEEE 802.11, ITU-R as well as other organizations are working to standardize OWC technology. Multiple OWC standards are analyzed in this report to create a diverse picture of the industry directions.

Applications

The report emphasizes that the spectrum of OWC applications is increasing with each year to support such developments as Intelligent Transportation Systems, Localization and other. Both indoor and outdoor users can appreciate OWC features in multiple instances when compare them with RF transmission.

The report also surveys OWC-related patents.

This report is important to a wide population of researches, technical and sales staff involved in the developing of advanced Optical Wireless Communications systems. It is recommended for both service providers and vendors that are working with related technologies.

Table of Contents

1.0. Introduction

  • 1.1. Report Goals
    • 1.1.1. Electromagnetic Optical Spectrum
    • 1.1.2. OWC Classes
  • 1.2. OWC Technologies
  • 1.3. Scope
  • 1.4. Research Methodology
  • 1.5. Target Audience

2.0. LED Properties

  • 2.1. General
  • 2.2. Spectrum
  • 2.3. LED Types
  • 2.4. LED Modulation
    • 2.4.1. Limitations
  • 2.5. LED Evolution
    • 2.5.1. General
    • 2.5.2. Benefits
    • 2.5.3. Market Characteristics
    • 2.5.4. Factors: New Regulations

3.0. Visible Light Communication (VLC)

  • 3.1. General
    • 3.1.1. VLC Drivers
    • 3.1.2. Organizations - Examples
      • 3.1.2.1. UC-Light Center
  • 3.2. Details
    • 3.2.1. Communication Channel
    • 3.2.2. Transmitter
    • 3.2.3. Receiver
    • 3.2.4. Major Characteristics
      • 3.2.4.1. General
      • 3.2.4.2. Modulation
      • 3.2.4.3. VLC Channel: Characteristics Summary
    • 3.2.5. Applications Examples
      • 3.2.5.1. Intelligent Transportation Systems
      • 3.2.5.2. Optical Wireless LAN
      • 3.2.5.3. Medical
      • 3.2.5.4. Visible Light Positioning
      • 3.2.5.5. City Wide Wireless Network
      • 3.2.5.6. Summary
  • 3.3. Challenges

4.0. Light Fidelity (LiFi)

  • 4.1. General
  • 4.2. Differences - LiFi and VLC
  • 4.3. LiFi Consortium
  • 4.4. Light Communications Alliance
  • 4.5. LiFi Limitations

5.0. Optical Camera Communications (OCC)

  • 5.1. General
  • 5.2. Driving Forces
  • 5.3. Principles
  • 5.4. Image Sensors
    • 5.4.1. Specifics
  • 5.5. Applications
    • 5.5.1. Deep Learning-Based Optical Camera Communications

6.0. Free Space Fiber

  • 6.1. General
    • 6.1.1. Background
  • 6.2. Major Characteristics
  • 6.3. Protection
  • 6.4. Major Use Cases
    • 6.4.1. Requirements
    • 6.4.2. Inter-satellite Links
      • 6.4.2.1. Commercialization
    • 6.4.3. Intra-building Communications
      • 6.4.3.1. New Applications
    • 6.4.4. Inter-building Communications
    • 6.4.5. Summary
  • 6.5. FSF Communications Benefits and Limitations: Summary
    • 6.5.1. Weather Factor
    • 6.5.2. Building Swaying
    • 6.5.3. Atmospheric Attenuation
  • 6.6. Design Issues
    • 6.6.1. Directions
    • 6.6.2. Major Use Cases
    • 6.6.3. Enhancements
  • 6.7. Diversification

7.0. OWC Standardization

  • 7.1. VLC/LiFi/OCC/FSF Standards Development
    • 7.1.1. IEEE - 802.15.7-2018
      • 7.1.1.1. Considerations
        • 7.1.1.1.1. Purpose
        • 7.1.1.1.2. New Communications Media
      • 7.1.1.2. Project
        • 7.1.1.2.1. Coexistence
        • 7.1.1.2.2. Essence
        • 7.1.1.2.3. Base
        • 7.1.1.2.4. Use Cases and Devices
        • 7.1.1.2.5. Physical Layer
          • 7.1.1.2.5.1. General
          • 7.1.1.2.5.2. Responsibilities
          • 7.1.1.2.5.3. Types
          • 7.1.1.2.5.4. Error Correction
          • 7.1.1.2.5.5. Rates
          • 7.1.1.2.5.6. Frequency Plan
          • 7.1.1.2.5.7. PHY Services
          • 7.1.1.2.5.8. Regulations
        • 7.1.1.2.6. MAC Layer
          • 7.1.1.2.6.1. Topologies
          • 7.1.1.2.6.2. Responsibilities
          • 7.1.1.2.6.3. Functionalities
          • 7.1.1.2.6.4. Channel Access
        • 7.1.1.2.7. Security
    • 7.1.2. IEEE - 802.11bb
      • 7.1.2.1. Differences
    • 7.1.3. IEEE- 802.15.13-2023
    • 7.1.4. IEEE 802.15.7m - OCC Standardization
      • 7.1.4.1. Background
      • 7.1.4.2. Process
      • 7.1.4.3. Modulation
        • 7.1.4.3.1. Directions: From 5G-to-6G
      • 7.1.4.4. OCC Performance Requirements
      • 7.1.4.5. Physical Layer
    • 7.1.5. Jeita (Japan Electronics and Information Technology Industries Association) Standards
      • 7.1.5.1. JEITA CP-1221
      • 7.1.5.2. JEITA CP-1222
      • 7.1.5.3. JEITA CP-1223
    • 7.1.6. Visible Light Communications Association (VLCA)
    • 7.1.7. ECMA 397-2010
    • 7.1.8. ITU G.9991
    • 7.1.9. ITU Report ITU-R SM.2422-0 (06/2018)
    • 7.1.10. FSF ITU G.640
    • 7.1.11. FSF ITU-R P.1814-2007
    • 7.1.12. FSF ARIB STD-T50 (OPTICAL WIRELESS LAN SYSTEM) v4-2009

8.0. OWC Industry

  • 8.1. VLC/LiFi/OCC Industry
    • Casio
    • Firefly
    • Fraunhofer IPMS
    • Global LiFI Tech
    • Lightbee
    • Nakagawa Laboratories
    • NEC
    • OptiPulse
    • Outstanding Technology
    • Oledcomm
    • PureVLC-PureLiFi
    • Qualcomm
    • Renesas
    • Signify (Philips Lighting)
    • Supreme Architecture
    • VLNComm
    • Zero1
  • 8.2. FSF Industry
    • AIRLINX Communications
    • BridgeComm
    • CableFree
    • CBL
    • Collinear
    • Dailianxu Engineering Company
    • fSONA
    • Guilin
    • Plaintree
    • SA Photonics (a CASI Company)
    • Tesat
    • Transcelestial
    • Taara

9.0. OWC Market

  • 9.1. Factors
  • 9.2. Estimate - VLC/LiFi/OCC Markets
  • 9.3. FSF Market
    • 9.3.1. General
    • 9.3.2. Market Drivers and Use Cases
    • 9.3.3. Market Segments
    • 9.3.4. Competition
      • 9.3.4.1. Fiber Optics Systems
      • 9.3.4.2. Microwave
      • 9.3.4.3. PONs
    • 9.3.5. Forecast
      • 9.3.5.1. General
      • 9.3.5.2. Model Assumptions
      • 9.3.5.3. Structure
      • 9.3.5.4. Market Characteristics
  • 9.4. VLC and FSF

10.0. Issues

  • 11.0 5G View
  • 11.1. Attocell
    • 11.1.1. Cell Structures
      • 11.1.1.1. Attocells Specifics
    • 11.1.2. Hybrid: OWC/RF
  • 11.2. Advantages of OWC Networking
    • 11.1.3. OWC and Self-driven Car

12.0. Conclusions

Attachment I: OWC - related Patents Survey (2018-2024)

List of Figures

  • Figure 1: Diagram of Electromagnetic Spectrum
  • Figure 2: Visible Light Spectrum
  • Figure 3: OWC Illustration
  • Figure 4: Illustration - Use Cases - OWC
  • Figure 5: OWC Technologies
  • Figure 6: LED Structure
  • Figure 7: LED Spectrum
  • Figure 8: White LED Properties Illustration
  • Figure 9: Estimate: Lighting LED Market - Global ($B)
  • Figure 10: LED Price Factor ($/W)
  • Figure 11: Cost and Brightness- Light Sources (Illustration)
  • Figure 12: Illustration: VLC Place
  • Figure 13: Illustration-VLC Channel
  • Figure 14: VLC Applications - Examples
  • Figure 15: OWC Applications in ITS
  • Figure 16: Simplified FSF Channel Diagram
  • Figure 17: PHY Types
  • Figure 18: Topologies
  • Figure 19: OWC Market Categories
  • Figure 20: Estimate: OWC Technologies Projected Market Size - Global ($B)
  • Figure 21: OWC Market Geography (2024)
  • Figure 22: FSF Market Segments
  • Figure 23: Estimate: FSF Global Market Value ($B)
  • Figure 24: FSF Market Geography
  • Figure 25: Hybrid VLC/RF System
  • Figure 26: Hybrid Structures

List of Tables

  • Table 1: LED Wavelengths (nm)
  • Table 2: Properties - Laser vs. LED
  • Table 3: Light Sources Characteristics
  • Table 4: VLC vs RF Properties
  • Table 5: VLC, IR and RF Communications - ITS Applications Comparison
  • Table 6: Locations Technologies
  • Table 7: Atmospheric Attenuation
  • Table 8: VLC Use Cases
  • Table 9: Devices and Characteristics
  • Table 10: Comparison: Position Use Cases
  • Table 11: Frequency Plan
  • Table 12: OCC Types of Modulation
  • Table 13: OCC Performance Characteristics
  • Table 14: VLC vs FSF