全球氫能市場展望——全價值鏈概述與分析、29個國家的氫能戰略以及39個大型氫谷、10家主要公司、電解槽、壓縮機和燃料電池製造商概況
市場調查報告書
商品編碼
1324417

全球氫能市場展望——全價值鏈概述與分析、29個國家的氫能戰略以及39個大型氫谷、10家主要公司、電解槽、壓縮機和燃料電池製造商概況

Global Hydrogen Market Outlook - Overview & Analysis of Entire Value Chain, including 29 National Hydrogen Strategies & 39 Large-scale Hydrogen Valleys, plus 10 Leading Companies & Profiles of Electrolyzers, Compressors, and Fuel Cell Manufacturers

出版日期: | 出版商: PTR Inc. | 英文 297 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

本報告調查了全球氫市場,提供了29個國家、39個氫谷、10家電解槽、壓縮機和燃料電池製造商的氫戰略信息,以及氫生產和最終用途的信息。我們提供了詳細的信息整個氫價值鏈的分析。

事實/數據點

  • 2020 年,全球涉及能源電解槽安裝的項目竣工量預計達到 65 MWe,到 2021 年將大幅增加至 286 MWe。
  • 根據在約 30 個國家規劃的一系列小型項目,到 2026 年,全球電解槽發電量可能達到約 17GW。
  • 根據規劃的大型項目,到2026年全球電解槽產能將達到8.7GW。
  • 如果計劃項目到 2026 年投入運營,中國、智利、西班牙和澳大利亞將總共提供 18GW 額外可再生能源產能中的 85% 用於綠色氫生產。
  • 來自價值鏈各個環節的 750 多個項目已在歐洲宣布,預計將於 2025 年投入運營。
  • 自本世紀初以來,全球氫需求以 2% 的複合年增長率增長,從 60 噸增至 90 噸。
  • 到 2050 年,全球所有氫氣生產商的氫氣需求預計將達到約 500 公噸。
  • 在歐洲,已有 18 個國家宣布了國家氫能戰略,其中歐洲在發布的國家氫能戰略數量方面處於領先地位。
  • 緊隨歐洲之後的是亞太地區 (5)、美洲 (4) 和中東/非洲 (2)。
  • 全球 21 個國家有 39 個氫谷。
  • 氫谷將作為新氫經濟的平台,97%的氫氣生產集中在利用自然能源電解制氫。
  • 聚合物電解質膜(PEM)技術是這些山谷中採用最多的綠色制氫電解技術,佔總數的50%,其次是鹼性電解技術,佔13%。 這些山谷中產生的氫氣的88%優選以壓縮氫氣或液態氫的形式儲存。
  • 85%的氫氣通過卡車和管道運輸,其中50%用於化工、煉油和鋼鐵行業。

目錄

第 1 章概述

  • i. 氫的性質
  • ii. 氫作為能量載體。 為什麼現在?

第二章價值鏈分析

  • i. 生產
    • i. 氫的類型
    • ii. 各種顏色的氫
    • iii. 制氫工藝
    • iv.制氫技術
    • 訴藍氫:欺詐還是救世主?
    • vi.電解生產綠色氫氣
    • 七、電解槽技術對比分析
    • 八、全球主要電解槽製造基地
  • ii. 存儲
    • a.現有儲氫技術
    • b. 最新儲氫技術
  • iii. 交通
    • a. 氫氣運輸方式概述
    • b. 潛在氫載體的比較
    • c. 潛在氫載體的成本比較
  • iv. 最終用途消耗
    • a. 煉油作業中的氫氣
      • 一、煉油作業中氫氣的生產和消耗
      • 二、煉油作業中氫處理流程圖
      • III.煉油作業中的氫氣壓縮機
    • b. 氨生產中的氫氣
      • 一、哈伯-博世法生產氨
    • c. 鋼鐵製造中的氫
      • 一、直接還原鐵(DRI)法煉鋼
      • II. 奧圖泰 - 還原直接煉鐵工藝
      • III. Midrex H2 直接還原鐵工藝
    • d. 石化工業中的氫氣
    • e. 建築中的氫
    • f. 電力行業中的氫
    • g. 移動出行中的氫(公路運輸)
      • 一、純電動汽車與氫燃料電池汽車對比分析
      • II. FCEV 與 BEV 相比的局限性和優勢
    • h. 航空中的氫
    • i. 鐵路中的氫氣
    • j. 氫在海洋中的應用

第 3 章氫需求預測:未來 30 年概述

  • i. 全球氫需求的驅動因素
  • ii. 2021 年全球氫需求展望
  • iii.氫市場的主要限制因素和驅動因素
  • iv. 全球氫氣需求預測
    • a. 高級情況
    • b. 基本場景
    • c. 低情況場景
    • v.未來30年氫氣需求分析

第 4 章氫的地理重要性

  • i. 氫在世界各地的可能性
  • ii. 世界各國氫能戰略概述
  • iii. 世界氫谷
  • iv. 全球主要企業

第五章國家氫能戰略

  • i. 美洲
    • a. 區域概覽
    • b. 各國概況
      • I. 加拿大
      • II. 智利
      • III. 哥倫比亞
      • IV. 烏拉圭
  • ii. 亞太地區
    • a. 區域概覽
    • b. 各國概況
      • I. 澳大利亞
      • II. 印度
      • III. 日本
      • IV. 韓國
  • iii. 歐洲
    • a. 區域概覽
      • 一、歐盟
    • b. 各國概況
      • I. 奧地利
      • II. 比利時
      • III. 捷克共和國
      • IV. 丹麥
      • V. 芬蘭
      • VI. 法國
      • VII. 匈牙利
      • VIII. 意大利
      • 九、荷蘭
      • X. 挪威
      • 十一、波蘭
      • 十二. 葡萄牙
      • 十三、俄羅斯
      • 十四. 斯洛伐克
      • XV. 西班牙
      • XVI. 瑞典
      • XVII. 英國
  • iv. 中東/非洲
    • a. 區域概覽
    • b. 各國概況
      • I. 摩洛哥
      • II. 南非
  • v. 正在製定的戰略
    • a. 中國
    • b. 新西蘭
    • c. 美國

第六章大規模氫谷

  • i. 美洲
    • a. 氫谷詳細概述
    • b. 氫谷:按應用分類
  • ii. 亞太地區
    • a. 氫谷詳細概述
    • b. 氫谷:按應用分類
  • iii. 歐洲
    • a. 氫谷詳細概述
    • b. 氫谷:按應用分類
  • iv. 中東/非洲
    • a. 氫谷詳細概述
    • b. 氫谷:按應用分類

第七章公司簡介

  • i. 電解槽製造商
    • a. Enapter
    • b. NEL Hydrogen
    • c. ITM Power
    • d. Plug Power
    • e. Sunfire
    • f. McPhy
    • g. Elogen
    • h. Green Hydrogen Systems
    • i. Ohmium
    • j. Thyssenkrupp
  • ii. 壓縮機製造商
    • a. PDC Machines
    • b. Sundyne
    • c. NASH
    • d. Baker Hughes
    • e. Burckhardt Compression
    • f. Linde
    • g. Neuman & Esser (NEA) Group
    • h. Howden
    • i. Ariel Corporation
    • j. MAN Energy Solutions
  • iii. 燃料電池製造商
    • a. Ballard Power Systems
    • b. Bloom Energy
    • c. GenCell
    • d. Toshiba Energy Systems & Solutions
    • e. Bosch
    • f. Panasonic
    • g. Loop Energy
    • h. AFC Energy
    • i. Advent Technologies
    • j. FuelCell Energy

第 8 章關於 PTR

簡介目錄
Product Code: S3000

Hydrogen is the most abundant naturally occurring element in the universe which can be produced at a large scale using renewable energy. It is emerging as an efficient and alternate fuel and will play a key role in achieving the climate pledge of net zero emissions by 2050. As hydrogen has potential applications in several sectors, its demand is increasing day and day, which is inadvertently causing an abrupt increase in the production of hydrogen. Several hydrogen valleys have been announced around the world which when completed, will play a major role in meeting the global hydrogen demand. Several countries around the world have come up with policy frameworks termed national hydrogen strategies to support and accelerate the adoption of hydrogen technologies. As the hydrogen economy continues to grow globally, not only the existing players are expanding their footprint in the hydrogen value chain but also new players are entering the market, therefore, it is imperative to understand the capabilities of companies involved in the hydrogen value chain.

‘The Global Hydrogen Market Outlook Report’ provides a holistic overview of the hydrogen market across the world. The report is divided into four sections: Hydrogen Market Overview, National Hydrogen Strategies, Hydrogen Valleys, and Company Profiles. It provides a global outlook of the hydrogen market, covering Asia-Pacific (APAC), Europe, Middle-East and Africa (MEA), and the North and South American regions. 29 National Hydrogen Strategies, 39 Hydrogen Valleys and 10 company profiles each of electrolyzer, compressor, and fuel cell manufacturers have been highlighted in the report along with a detailed analysis of the entire value chain of hydrogen from hydrogen production to its end-use.

Facts/Data points:

  • Project completions involving electrolyzer installations for energy purposes reached an estimated 65 MWe globally in 2020 and grew exponentially to 286 MWe in 2021.
  • Planned small-scale projects pipeline in almost 30 countries indicate global electrolyzer capacity could reach approximately 17 GW by 2026.
  • Planned large-scale projects pipeline indicates that global electrolyzer capacity could reach 8.7 GW by 2026.
  • If planned projects are commissioned by 2026, China, Chile, Spain, and Australia could together bring 85% of the additional 18 GW of renewable capacity dedicated to green hydrogen production.
  • Within Europe there are over 750 announced projects from all parts of the value chain that are expected to enter operation by 2025.
  • Global hydrogen demand has increased with a CAGR of 2% from 60 Mt to 90 Mt since the start of this century.
  • Global hydrogen demand from all sources of hydrogen production is expected to be approximately 500 Mt by 2050.
  • The European continent leads other regions when it comes to published national hydrogen strategies as 18 countries in the European continent have published their respective national hydrogen strategy.
  • Europe is followed by APAC (5), the Americas (4), and Middle East and African (2) regions.
  • There are 39 hydrogen valleys in 21 countries around the world.
  • Hydrogen Valleys act as a platform for the emerging hydrogen economy with 97% of the hydrogen production being focused on producing hydrogen through electrolysis using renewables.
  • Polymer Electrolyte Membrane (PEM) technology is the most employed electrolysis technology for green hydrogen production in these valleys which makes up 50% of the total share followed by Alkaline electrolysis technology at 13%.
  • 88% of the hydrogen produced in these valleys is preferred to be stored in the form of compressed hydrogen gas or liquid hydrogen.
  • 85% of hydrogen will be transported through trucks and pipelines whereas 50% of it will be used in chemical, refinery, and steel industries whereas the rest of it is expected to be used in other industries such as mobility, power generation, etc.

Countries Covered:

1. Global

2. Americas

  • i. Canada
  • ii. Chile
  • iii. Colombia
  • iv. Uruguay
  • v. USA

3. Asia-Pacific (APAC)

  • i. Australia
  • ii. China
  • iii. India
  • iv. Japan
  • v. New Zealand
  • vi. South Korea

5. Middle-East and Africa (MEA)

  • i. Morocco
  • ii. South Africa

4. Europe

  • i. Austria
  • ii. Belgium
  • iii. Czech Republic
  • iv. Denmark
  • v. Finland
  • vi. France
  • vii. Hungary
  • viii. Italy
  • ix. Netherlands
  • x. Norway
  • xi. Poland
  • xii. Portugal
  • xiii. Russia
  • xiv. Slovakia
  • xv. Spain
  • xvi. Sweden
  • xvii. United Kingdom

Table of Contents

1. Overview

  • i. Properties of Hydrogen
  • ii. Hydrogen as Energy Vector. Why Now?

2. Value Chain Analysis

  • i. Production
    • i. Types of Hydrogen
    • ii. The Different Colors of Hydrogen
    • iii. Hydrogen Production Process
    • iv. Hydrogen Production Technologies
    • v. Blue Hydrogen: A Scam or Savior?
    • vi. Green Hydrogen Prodcution Through Electrolysis
    • vii. Comparative Analysis of Electrolyzer Technologies
    • viii. Key Global Electrolyzer Manufacturing Sites
  • ii. Storage
    • a. Established Technologies for Hydrogen Storage
    • b. Emerging Technologies for Hydrogen Storage
  • iii. Transportation
    • a. Overview of Hydrogen Transportation Methods
    • b. Comparison of Potential Hydrogen Carriers
    • c. Cost Comparison of Potential Hydrogen Carriers
  • iv. End-Use Consumption
    • a. Hydrogen in Refining Operations
      • I. Hydrogen Production and Consumption in Refining Operations
      • II. Hydrogen Process Flow Chart in Refining Operations
      • III. Hydrogen Compressors in Refining Operations
    • b. Hydrogen in Ammonia Production
      • I. Ammonia Production through Haber-Bosch Process
    • c. Hydrogen in Steel Making
      • I. Steel Making through Direct Reduced Iron (DRI) Method
      • II. Outotec - Reduced Direct Iron Process
      • III. Midrex H2 Direct Reduced Iron Process
    • d. Hydrogen in Petrochemical Industry
    • e. Hydrogen in Buildings
    • f. Hydrogen in Power Sector
    • g. Hydrogen in Mobility (Road Transport)
      • I. Comparative Analysis of of BEVs and Hydrogen FCEVs
      • II. Constraints and Advantages of FCEVs as compared to BEVs
    • h. Hydrogen in Aviation
    • i. Hydrogen in Rail
    • j. Hydrogen in Maritime

3. Hydrogen Demand Forecast: An Overview of Next 30 Years

  • i. Global Hydrogen Demand Driving Factors
  • ii. Global Hydrogen Demand Outlook-2021
  • iii. Key Inhibitors and Accelerators to the Hydrogen Market
  • iv. Global Hydrogen Demand Forecast
    • a. High Case Scenario
    • b. Base Case Scenario
    • c. Low Case Scenario
    • v. Analysis of Hydrogen Demand Over Next 30 Years

4. Geographical Significance of Hydrogen

  • i. Hydrogen Potential Across the World
  • ii. Global Overview of National Hydrogen Strategies
  • iii. Hydrogen Valleys Across the Globe
  • iv. Key Players Across the Globe

5. National Hydrogen Strategies

  • i. Americas
    • a. Regional Overview
    • b. Country-Specific Overview
      • I. Canada
      • II. Chile
      • III. Colombia
      • IV. Uruguay
  • ii. Asia-Pacific (APAC)
    • a. Regional Overview
    • b. Country-Specific Overview
      • I. Australia
      • II. India
      • III. Japan
      • IV. South Korea
  • iii. Europe
    • a. Regional Overview
      • I. European Union
    • b. Country-Specific Overview
      • I. Austria
      • II. Belgium
      • III. Czech Republic
      • IV. Denmark
      • V. Finland
      • VI. France
      • VII. Hungary
      • VIII. Italy
      • IX. Netherlands
      • X. Norway
      • XI. Poland
      • XII. Portugal
      • XIII. Russia
      • XIV. Slovakia
      • XV. Spain
      • XVI. Sweden
      • XVII. United Kingdom
  • iv. Middle-East and Africa (MEA)
    • a. Regional Overview
    • b. Country-Specific Overview
      • I. Morocco
      • II. South Africa
  • v. Strategies Under Preparation
    • a. China
    • b. New Zealand
    • c. USA

6. Large-Scale Hydrogen Valleys

  • i. Americas
    • a. Detailed Overview of Hydrogen Valleys
    • b. Hydrogen Valleys by Application
  • ii. Asia-Pacific (APAC)
    • a. Detailed Overview of Hydrogen Valleys
    • b. Hydrogen Valleys by Application
  • iii. Europe
    • a. Detailed Overview of Hydrogen Valleys
    • b. Hydrogen Valleys by Application
  • iv. Middle-East and Africa (MEA)
    • a. Detailed Overview of Hydrogen Valleys
    • b. Hydrogen Valleys by Application

7. Company Profiles

  • i. Electrolyzer Manufacturers
    • a. Enapter
    • b. NEL Hydrogen
    • c. ITM Power
    • d. Plug Power
    • e. Sunfire
    • f. McPhy
    • g. Elogen
    • h. Green Hydrogen Systems
    • i. Ohmium
    • j. Thyssenkrupp
  • ii. Compressor Manufacturers
    • a. PDC Machines
    • b. Sundyne
    • c. NASH
    • d. Baker Hughes
    • e. Burckhardt Compression
    • f. Linde
    • g. Neuman & Esser (NEA) Group
    • h. Howden
    • i. Ariel Corporation
    • j. MAN Energy Solutions
  • iii. Fuel Cell Manufacturers
    • a. Ballard Power Systems
    • b. Bloom Energy
    • c. GenCell
    • d. Toshiba Energy Systems & Solutions
    • e. Bosch
    • f. Panasonic
    • g. Loop Energy
    • h. AFC Energy
    • i. Advent Technologies
    • j. FuelCell Energy

8. About PTR

Table of Exhibits*

  • 1.Properties of Hydrogen
  • 2.The Hydrogen Value Chain
  • 3.Hydrogen Pathways
  • 4.Types of Hydrogen
  • 5.The Different Colors of Hydrogen
  • 6.Hydrogen Production Process
  • 7.Characteristics of Electrolyzer Technologies
  • 8.Advantages of Electrolyzer Technologies
  • 9.Disadvantages of Electrolyzer Technologies
  • 10.Capacity of Electrolyzers for Hydrogen Production by Commissioning Year, By Intended Use of Hydrogen (2010-2021)
  • 11.Capacity of Electrolyzers for Hydrogen Production in 2021, By Intended Use of Hydrogen
  • 12.Small Electrolysis Projects 2020-2026 (1-10 MW)
  • 13.Large Electrolysis Announced Projects 2021-2026 (10-100 MW)
  • 14.Key Global Electrolyzer Manufacturing Sites
  • 15.Electrolyzer Capacity by Region (2030, 2050)
  • 16.Types of Hydrogen Storage Techniques
  • 17.Established Technologies for Hydrogen Storage
  • 18.Emerging Technologies for Hydrogen Storage
  • 19.Types of Hydrogen Transportation Methods
  • 20.Comparison of Potential Hydrogen Carriers
  • 21.Cost Comparison of Potential Hydrogen Carriers
  • 22.Simplified Flow Diagram of Auto-Thermal Reforming with a Carbon Capture and Storage (ATR-CCS) Plant.
  • 23.Simplified Flow Diagram of Steam Methane Reforming with a Carbon Capture and Storage (SMR-CCS) Plant.
  • 24.Hydrogen Process Flow Chart in Refining Operations
  • 25.Hydrogen in Ammonia Production
  • 26.Direct Reduced Iron (DRI) Method: Blast Furnace Route & Hybrit Route
  • 27.Outotec DRI Method
  • 28.Midrex H2 DRI Method
  • 29.Hydrogen in Petrochemical Industry
  • 30.Technical comparison of BEVs and Hydrogen FCEVs
  • 31.Constraints and advantages of BEVs and Hydrogen FCEVs
  • 32.Global Hydrogen Demand (2000-2020)
  • 33.Global Hydrogen Demand by Region-2021
  • 34.Global Hydrogen Demand by Application-2021
  • 35.Key Inhibitors and Accelerators to the Hydrogen Market
  • 36.High Case Scenario Global Temperature less than 1.8°C (2030-2050)
  • 37.Base Case Scenario Global Temperature 1.8-2.3°C (2030-2050)
  • 38.Low Case Scenario Global Temperature greater than 2.3°C (2030-2050)
  • 39.Hydrogen Potential Across the World
  • 40.Global Overview of National Hydrogen Strategies
  • 41.Hydrogen Valleys Across the Globe
  • 42.Key Players Across the Globe
  • 43.Regional Overview of National Strategies: Americas
  • 44.Regional Overview of National Strategies: APAC
  • 45.Regional Overview of National Strategies: Europe
  • 46.Regional Overview of National Strategies: MEA
  • 47.Hydrogen Valleys by Application: Americas
  • 48.Hydrogen Valleys by Application: APAC
  • 49.Hydrogen Valleys by Application: Europe
  • 50.Hydrogen Valleys by Application: MEA