全球外骨骼市場 - 按目標身體部位、操作模式、外骨骼形狀、移動性、最終用戶、地區:產業趨勢和全球預測(2023-2035)
市場調查報告書
商品編碼
1398314

全球外骨骼市場 - 按目標身體部位、操作模式、外骨骼形狀、移動性、最終用戶、地區:產業趨勢和全球預測(2023-2035)

Global Exoskeleton Market by Body Part Covered, Mode of Operation, Form of Exoskeleton, Mobility, End Users and Geography : Industry Trends and Global Forecasts, 2023-2035

出版日期: | 出版商: Roots Analysis | 英文 425 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

預計到 2035 年,全球外骨骼市場將達到 200 億美元,在預測期內(2023-2035 年)複合年增長率為 23.1%。

過去幾年,醫療保健系統一直面臨著多發性硬化症和中風等神經系統疾病帶來的日益沉重的負擔。 根據世界衛生組織 (WHO) 統計,目前全球約有 180 萬人患有多發性硬化症,每年有超過 1,220 萬人患有中風。 隨著人口老化,這一數字預計將進一步增加。

神經系統疾病通常會導致肌肉無力,無論是特定肌肉群(如偏癱、截癱或四肢癱瘓)或全身肌肉無力,都會影響運動技能。 不幸的是,神經運動障礙無法治愈,但輪椅、拐杖和助行器等行動輔助設備可以提高患者的獨立性和舒適度。 儘管這些設備被廣泛使用,但它們只能提供短期緩解,而不是永久解決方案。 此外,不當操作和長時間使用這些設備可能會導致身體疲勞、不適和受傷,最終降低患者的生活品質。 事實上,據報道,大約 50% 的手動輪椅使用者在一生中的某個時刻經歷過肩部損傷。

隨著時間的推移,外骨骼已成為部分替代或補充復健設備,使脊髓損傷和相關疾病的患者在醫院和家中比傳統交通工具更加自由。我現在可以走路了。 醫用外骨骼是可穿戴的外骨骼,旨在幫助行動不便的患者恢復上肢或下肢的運動能力,無論是部分還是完全癱瘓。它是一種機電設備。 透過利用神經可塑性,配備感測器、馬達、致動器、電源和控制策略的醫用外骨骼可以促進基本運動的恢復,並治療後天性腦損傷(ABI)和脊髓損傷(SCI)等病症,加速損傷復健。 不僅是患者,護士和外科醫生等醫療保健提供者也面臨各種肌肉骨骼疾病,因為他們在醫療領域的體力要求很高。 醫用外骨骼可以幫助護理人員完成抬起和移動病人、穿越障礙物以及長時間站立等任務。

除醫療行業外,建築、物流、車輛製造、飛機製造、造船廠、汽車/金屬維修、鑄造、航空、維修和其他工廠運營等廣泛行業都可以提高工人績效並減少職業事故。外骨骼科技正在被用來防止這種情況發生。 國際勞工組織 (ILO) 估計,每年有超過 230 萬名工人因工傷事故和疾病死亡。 每年都會發生如此多的事故,採用工業外骨骼來協助工人完成體力要求較高的任務,例如舉起重物和進行高空作業,是工作場所安全的重要一步。除了提高生產力外,它還具有潛力提高員工留任率、提高生產力並降低成本。

儘管外骨骼設備具有許多優點,但其採用仍受到多種因素的阻礙,包括成本障礙和潛在用戶缺乏意識。 為了獲得更廣泛的接受,外骨骼製造商正在將其研發工作轉向降低外骨骼的成本。 我們還將雲端運算、深度學習、智慧感測器和人工智慧等先進技術融入我們的外骨骼產品中。 隨著外骨骼技術的不斷進步,這些設備的成本不斷下降,並且利益相關者意識到由於更高的效益成本比而與外骨骼產品相關的正投資回報(ROI),預計各行業對新興技術的採用將會增加。 這將推動預測期內全球外骨骼市場的成長。

在本報告中,我們分析了全球外骨骼市場,包括市場的基本結構、最新情況、主要推動和限制因素、產品競爭力、資本交易和業務聯盟的最新趨勢,我們調查了整體的趨勢市場規模、細分市場和地區的詳細趨勢、腫瘤學概況以及未來市場發展策略。

主要市場公司

  • Bionic Yantra
  • CYBERDYNE
  • Ekso Bionics
  • ExoAtlet
  • Fourier Intelligence
  • Gloreha
  • Guangzhou Yikang Medical Equipment
  • Hexar Humancare
  • Hocoma
  • MediTouch
  • Milebot Robotics
  • Myomo
  • Neofect
  • NextStep Robotics
  • Panasonic
  • ReWalk Robotics
  • Rex Bionics
  • Roam Robotics
  • Trexo Robotics
  • Tyromotion
  • U&O Technologies

目錄

第一章前言

第二章分析方法

第 3 章經濟與其他專案特定考量

第 4 章執行摘要

第 5 章簡介

  • 分析概述
  • 外骨骼概述
  • 外骨骼的歷史
  • 外骨骼的分類
  • 外骨骼的應用
  • 外骨骼的特點
  • 外骨骼的局限性
  • 未來展望

第六章醫療外骨骼:市場狀況

  • 分析概述
  • 醫療外骨骼:整體市場情勢
  • 醫療外骨骼:開發者景觀

第七章非醫用外骨骼:市場狀況

  • 分析概述
  • 非醫用外骨骼:整體市場狀況
  • 非醫用外骨骼:開發者景觀

第八章醫療外骨骼:產品競爭力分析

  • 分析概述
  • 假設和主要參數
  • 分析法
  • 醫療外骨骼:產品競爭力分析

第 9 章外骨骼開發商:詳細公司簡介

  • 分析概述
  • CYBERDYNE
  • Ekso Bionics
  • ExoAtlet
  • Fourier Intelligence
  • Gloreha
  • Guangzhou Yikang
  • Hexar Humancare
  • Hocoma
  • Panasonic
  • Tyromotion

第十章外骨骼開發商:公司簡介(表格格式)

  • 分析概述
  • Bionic Yantra
  • MediTouch
  • Milebot Robotics
  • Myomo
  • Neofect
  • NextStep Robotics
  • ReWalk Robotics
  • Rex Bionics
  • Roam Robotics
  • Trexo Robotics
  • U&O Technologies

第 11 章醫療外骨骼:商業聯盟/合作

  • 分析概述
  • 業務夥伴模式
  • 醫療外骨骼:商業聯盟和合作列表

第十二章專利分析

  • 分析概述
  • 分析範圍/方法
  • 外骨骼:專利分析
  • 外骨骼:專利基準
  • 實力雄厚的公司:依引用次數分類

第十三章藍海戰略

第 14 章市場影響分析:驅動因素、限制、機會、挑戰

  • 分析概述
  • 市場驅動因素
  • 市場限制因素
  • 市場機會
  • 市場挑戰
  • 結論

第十五章全球外骨骼市場

  • 分析概述
  • 預測方法與關鍵假設
  • 全球外骨骼市場:過去趨勢(2018-2022)與預測(2023-2035)
  • 主要市場細分
  • 動態儀表板

第 16 章外骨骼市場:目標身體部位

  • 分析概述
  • 預測方法與關鍵假設
  • 醫用上身外骨骼:過去的趨勢(2018-2022)與預測(2023-2035)
  • 醫用下半身外骨骼:過去的趨勢(2018-2022)與預測(2023-2035)
  • 醫用全身外骨骼:過去的趨勢(2018-2022)與預測(2023-2035)
  • 非醫用上身外骨骼:過去趨勢(2018-2022)與預測(2023-2035)
  • 非醫用下半身外骨骼:過去趨勢(2018-2022)與預測(2023-2035)
  • 非醫用全身外骨骼:過去趨勢(2018-2022)與預測(2023-2035)
  • 整個上身外骨骼:過去的趨勢(2018-2022)與預測(2023-2035)
  • 整個下半身外骨骼:過去的趨勢(2018-2022)與預測(2023-2035)
  • 全身外骨骼:過去的趨勢(2018-2022)與預測(2023-2035)
  • 數據測量與驗證

第十七章外骨骼市場:依營運模式劃分

  • 分析概述
  • 預測方法與關鍵假設
  • 醫療動力外骨骼:過去的趨勢(2018-2022)與預測(2023-2035)
  • 醫療被動外骨骼:過去的趨勢(2018-2022)和預測(2023-2035)
  • 醫用混合外骨骼:過去的趨勢(2018-2022)和預測(2023-2035)
  • 非醫療動力外骨骼:過去的趨勢(2018-2022)與預測(2023-2035)
  • 非醫用被動外骨骼:過去趨勢(2018-2022)與預測(2023-2035)
  • 非醫用混合外骨骼:過去的趨勢(2018-2022)和預測(2023-2035)
  • 整體動力外骨骼:過去趨勢(2018-2022 年)與預測(2023-2035 年)
  • 整體被動外骨骼:過去趨勢(2018-2022)與預測(2023-2035)
  • 整體混合外骨骼:過去趨勢(2018-2022 年)與預測(2023-2035 年)
  • 數據測量與驗證

第十八章外骨骼市場:依外骨骼形狀

  • 分析概述
  • 預測方法與關鍵假設
  • 醫用剛性外骨骼:過去的趨勢(2018-2022)與預測(2023-2035)
  • 醫用軟外骨骼:過去趨勢(2018-2022)與預測(2023-2035)
  • 非醫用剛性外骨骼:過去的趨勢(2018-2022)與預測(2023-2035)
  • 非醫用軟外骨骼:過去的趨勢(2018-2022)和預測(2023-2035)
  • 整體剛性外骨骼:過去趨勢(2018-2022 年)與預測(2023-2035 年)
  • 軟外骨骼整體:過去的趨勢(2018-2022)與預測(2023-2035)
  • 數據測量與驗證

第十九章外骨骼市場:移動性別

  • 分析概述
  • 預測方法與關鍵假設
  • 醫療固定/支撐外骨骼:過去趨勢(2018-2022 年)和預測(2023-2035 年)
  • 醫療/移動/陸上行走外骨骼:過去的趨勢(2018-2022)和預測(2023-2035)
  • 數據測量與驗證

第 20 章外骨骼市場:依最終使用者劃分

  • 分析概述
  • 預測方法與關鍵假設
  • 病人/醫療外骨骼:過去的趨勢(2018-2022)和預測(2023-2035)
  • 醫療保健提供者的醫療外骨骼:過去的趨勢(2018-2022)和預測(2023-2035)
  • 產業工人和非醫療用途的外骨骼:過去趨勢(2018-2022 年)和預測(2023-2035 年)
  • 軍用/非醫用外骨骼:過去的趨勢(2018-2022)和預測(2023-2035)
  • 其他/非醫療外骨骼:過去趨勢(2018-2022 年)和預測(2023-2035 年)
  • 最終使用者的整體外骨骼:過去趨勢(2018-2022 年)和預測(2023-2035 年)
  • 數據測量與驗證

第 21 章外骨骼市場:依地區

  • 分析概述
  • 預測方法與關鍵假設
  • 北美:過去趨勢(2018-2022 年)與預測(2023-2035 年)
  • 歐洲:過去趨勢(2018-2022 年)與預測(2023-2035 年)
  • 亞太地區:過去趨勢(2018-2022 年)與預測(2023-2035 年)
  • 其他地區(世界各地):過去趨勢(2018-2022 年)和預測(2023-2035 年)
  • 數據測量與驗證

第22章結論

第 23 章管理見解

  • 分析概述
  • ABLE Human Motion
  • Archelis
  • Biomotum
  • Bionic Power
  • Bionic Yantra

第 24 章附錄 1:藍海策略與轉型工具

第 25 章附錄 2:表格資料

第26章附錄3:公司與組織名單

簡介目錄
Product Code: RA100462

The global exoskeleton market is projected to reach USD 20,000 million by 2035 growing at a CAGR of 23.1% during the forecast period 2023-2035.

From the past years, the healthcare system has faced an increasing burden from neurological disorders like multiple sclerosis and strokes, which have become more prevalent. According to the World Health Organization (WHO), approximately 1.8 million people worldwide are currently living with multiple sclerosis, and over 12.2 million individuals suffer from strokes each year. These numbers are expected to rise further due to the aging population.

Neurological disorders often result in muscle weakness, impacting mobility, whether it's in specific muscle groups (like hemiplegia, paraplegia, or quadriplegia) or throughout the entire body. Unfortunately, there is no cure for neuromotor impairment, but the use of assistive mobility devices such as wheelchairs, crutches, and walkers can enhance independence and comfort for patients. While these devices are widely used, they offer short-term relief rather than a transformative solution. Additionally, improper handling or prolonged use of these devices can lead to physical fatigue, discomfort, and injuries, ultimately reducing the patients' quality of life. In fact, it's reported that approximately 50% of manual wheelchair users experience shoulder injuries at some point in their lives.

Over time, exoskeletons have emerged as a partial alternative or complementary rehabilitation device, enabling individuals with spinal cord injuries and related conditions to walk more freely in hospitals and at home compared to traditional mobility options. A medical exoskeleton is a wearable electromechanical device designed to assist patients with mobility issues, whether they are partially or completely paralyzed, in regaining movement in their upper or lower extremities. By harnessing neuroplasticity, medical exoskeletons equipped with sensors, motors, actuators, power sources, and control strategies facilitate the recovery of fundamental movements and accelerate rehabilitation from injuries, such as acquired brain injury (ABI) or spinal cord injury (SCI). Beyond patients, healthcare providers such as nurses and surgeons also face various musculoskeletal disorders due to the physically demanding nature of their roles in the healthcare sector. Medical exoskeletons can assist caregivers in tasks such as lifting and moving patients, navigating obstacles, and standing for extended periods.

Outside the healthcare industry, exoskeleton technology is being used to enhance the performance of workers and prevent work-related accidents in a wide range of industries, including construction, logistics, vehicle manufacturing, aircraft production, shipyards, automotive and metal mechanics, foundries, aeronautics, maintenance, and other factory work. According to estimates from the International Labor Organization (ILO), over 2.3 million workers die each year due to work-related accidents or diseases. With such a significant number of accidents occurring annually, the adoption of industrial exoskeletons to assist workers in physically demanding tasks such as lifting heavy loads or performing overhead work has the potential to not only improve workplace safety but also increase employee retention, enhance productivity, and reduce costs.

Owing to the numerous advantages they offer, the adoption of exoskeleton devices is hindered by various factors, including cost barriers and a lack of awareness among potential users. To encourage broader acceptance, exoskeleton companies are directing their research and development efforts towards reducing the cost of exoskeletons. They are also incorporating advanced technologies such as cloud computing, deep learning, smart sensors, and artificial intelligence into their exoskeleton product offerings. As exoskeleton technology continues to advance and the cost of these devices decreases, and as stakeholders recognize the positive return on investment (ROI) associated with exoskeleton products due to their higher benefit-cost ratio, the adoption of this emerging technology is expected to increase across various industries. This, in turn, will drive the growth of the global exoskeleton market during the forecast period.

Key Market Segments:

Body Part Covered

  • Upper Extremity
  • Lower Extremity
  • Full Body

Mode of Operation

  • Powered
  • Passive
  • Hybrid

Form

  • Rigid
  • Soft

Mobility

  • Fixed / Supported
  • Mobile

End Users

  • Patients
  • Healthcare Providers
  • Industry Workers
  • Military Personnel
  • Others

Geography

  • North America
  • Europe
  • Asia-Pacific
  • Rest of the World

Research Coverage:

  • The report studies the exoskeleton market based on body part covered, mode of operation, form of exoskeleton, mobility, end users and geography
  • The report analyzes factors (such as drivers, restraints, opportunities, and challenges) affecting the market growth
  • The report assesses the potential advantages and obstacles within the market for those involved and offers information on the competitive environment for top players in the market.
  • The report forecasts the revenue of market segments with respect to four major regions
  • It offers an insightful assessment of product competitiveness in the medical exoskeleton market, considering factors like supplier strength, product features, and end users.
  • The report features detailed profiles of key wearable exoskeleton companies, focusing on their establishment, size, location, leadership, financial performance (if available), product portfolio, recent developments, and future outlook.
  • Analysis of recent partnerships and collaborations related to medical exoskeletons, established since 2017.
  • The report delves into patents filed or granted for exoskeletons since 2016, considering patent types, application and publication years, geographical location, applicant type, publication time, CPC symbols, and leading patent holders, accompanied by a comprehensive patent benchmarking analysis.
  • It provides a strategic guide for emerging medical exoskeleton companies to gain a competitive edge through a blue ocean strategy, offering thirteen strategic tools to explore untapped market opportunities.

Key Benefits of Buying this Report:

  • The report offers market leaders and newcomers valuable insights into revenue estimations for both the overall market and its sub-segments.
  • Stakeholders can utilize the report to enhance their understanding of the competitive landscape, allowing for improved business positioning and more effective go-to-market strategies.
  • The report provides stakeholders with a pulse on the exoskeleton market, furnishing them with essential information on significant market drivers, barriers, opportunities, and challenges.

Key Market Companies:

  • Bionic Yantra
  • CYBERDYNE
  • Ekso Bionics
  • ExoAtlet
  • Fourier Intelligence
  • Gloreha
  • Guangzhou Yikang Medical Equipment
  • Hexar Humancare
  • Hocoma
  • MediTouch
  • Milebot Robotics
  • Myomo
  • Neofect
  • NextStep Robotics
  • Panasonic
  • ReWalk Robotics
  • Rex Bionics
  • Roam Robotics
  • Trexo Robotics
  • Tyromotion
  • U&O Technologies

TABLE OF CONTENTS

1. PREFACE

  • 1.1. Introduction
  • 1.2. Key Market Insights
  • 1.3. Scope of the Report
  • 1.4. Research Methodology
  • 1.5. Frequently Asked Questions
  • 1.6. Chapter Outlines

2. RESEARCH METHODOLOGY

  • 2.1. Chapter Overview
  • 2.2. Research Assumptions
  • 2.3. Project Methodology
  • 2.4. Forecast Methodology
  • 2.5. Robust Quality Control
  • 2.6. Key Market Segmentations
  • 2.7. Key Considerations
    • 2.7.1. Demographics
    • 2.7.2. Economic Factors
    • 2.7.3. Government Regulations
    • 2.7.4. Supply Chain
    • 2.7.5. COVID Impact / Related Factors
    • 2.7.6. Market Access
    • 2.7.7. Healthcare Policies
    • 2.7.8. Industry Consolidation

3. ECONOMIC AND OTHER PROJECT SPECIFIC CONSIDERATIONS

  • 3.1. Chapter Overview
  • 3.2. Market Dynamics
    • 3.2.1. Time Period
      • 3.2.1.1. Historical Trends
      • 3.2.1.2. Current and Forecasted Estimates
    • 3.2.2. Currency Coverage
      • 3.2.2.1. Overview of Major Currencies Affecting the Market
      • 3.2.2.2. Impact of Currency Fluctuations on the Industry
    • 3.2.3. Foreign Exchange Impact
      • 3.2.3.1. Evaluation of Foreign Exchange Rates and Their Impact on Market
      • 3.2.3.2. Strategies for Mitigating Foreign Exchange Risk
    • 3.2.4. Recession
      • 3.2.4.1. Historical Analysis of Past Recessions and Lessons Learnt
      • 3.2.4.2. Assessment of Current Economic Conditions and Potential Impact on the Market
    • 3.2.5. Inflation
      • 3.2.5.1. Measurement and Analysis of Inflationary Pressures in the Economy
      • 3.2.5.2. Potential Impact of Inflation on the Market Evolution

4. EXECUTIVE SUMMARY

5. INTRODUCTION

  • 5.1. Chapter Overview
  • 5.2. Overview of Exoskeleton
  • 5.3. History of Exoskeleton
  • 5.4. Classification of Exoskeleton
    • 5.4.1. Based on Body Part Supported
    • 5.4.2. Based on Form of Exoskeleton
    • 5.4.3. Based on Mode of Operation
    • 5.4.4 Based on Mobility
  • 5.5. Applications of Exoskeleton
  • 5.6. Features of Exoskeleton
  • 5.7. Limitations of Exoskeleton
  • 5.8. Future Perspectives

6. MEDICAL EXOSKELETON: MARKET LANDSCAPE

  • 6.1. Chapter Overview
  • 6.2. Medical Exoskeleton: Overall Market Landscape
    • 6.2.1. Analysis by Status of Development
    • 6.2.2. Analysis by Type of Body Part Covered
    • 6.2.3. Analysis by Mode of Operation
    • 6.2.4. Analysis by Type of Body Part Covered and Mode of Operation
    • 6.2.5. Analysis by Form of Exoskeleton
    • 6.2.6. Analysis by Mode of Operation and Form of Exoskeleton
    • 6.2.7. Analysis by Type of Body Part Covered and Form of Exoskeleton
    • 6.2.8. Analysis by Device Mobility
    • 6.2.9. Analysis by Mode of Operation and Device Mobility
    • 6.2.10. Analysis by Form of Exoskeleton and Device Mobility
    • 6.2.11. Analysis by Type of Body Part Covered and Device Mobility
    • 6.2.12. Analysis by User-Machine Interface
    • 6.2.13. Analysis by Type of Body Part Covered and User-Machine Interface
    • 6.2.14. Analysis by Mode of Operation and User-Machine Interface
    • 6.2.15. Analysis by Availability of Advanced Features
    • 6.2.16. Analysis by End User
    • 6.2.17. Analysis by Patient Age Group
    • 6.2.18. Analysis by Exoskeleton Setting for Patients
    • 6.2.19. Analysis by Breakthrough Designation
  • 6.3. Medical Exoskeleton: Developer: Landscape
    • 6.3.1. Analysis by Year of Establishment
    • 6.3.2. Analysis by Company Size
    • 6.3.3. Analysis by Location of Headquarters
    • 6.3.4. Analysis by Company Size and Location of Headquarters
    • 6.3.5. Analysis by Company Ownership
    • 6.3.6. Analysis by Location of Headquarters and Company Ownership
    • 6.3.7. Analysis by Additional Services Offered
    • 6.3.8. Most Active Players: Analysis by Number of Medical Exoskeleton

7. NON-MEDICAL EXOSKELETON: MARKET LANDSCAPE

  • 7.1. Chapter Overview
  • 7.2. Non-Medical Exoskeleton: Overall Market Landscape
    • 7.2.1. Analysis by Status of Development
    • 7.2.2. Analysis by Type of Body Part Covered
    • 7.2.3. Analysis by Body Part Supported
    • 7.2.4. Analysis by Mode of Operation
    • 7.2.5. Analysis by Form of Exoskeleton
    • 7.2.6. Analysis by Type of Body Part Covered and Mode of Operation
    • 7.2.7. Analysis by Type of Body Part Covered and Form of Exoskeleton
    • 7.2.8. Analysis by Mode of Operation and Form of Exoskeleton
    • 7.2.9. Analysis by Application Area
    • 7.2.10. Analysis by Mode of Operation and Application Area
  • 7.3. Non-Medical Exoskeleton: Developer Landscape
    • 7.3.1. Analysis by Year of Establishment
    • 7.3.2. Analysis by Company Size
    • 7.3.3. Analysis by Company Size and Employee Count
    • 7.3.4. Analysis by Location of Headquarters
    • 7.3.5. Analysis by Company Size and Location of Headquarters
    • 7.3.6. Analysis by Company Ownership
    • 7.3.7. Analysis by Location of Headquarters and Company Ownership
    • 7.3.8. Most Active Players: Analysis by Number of Non-Medical Exoskeleton
    • 7.3.9. Most Active Players: Analysis by Number of Medical and Non-Medical Exoskeleton

8. MEDICAL EXOSKELETON: PRODUCT COMPETITVENESS ANALYSIS

  • 8.1 Chapter Overview
  • 8.2. Assumptions and Key Parameters
  • 8.3. Methodology
  • 8.4. Medical Exoskeleton: Product Competitiveness Analysis
    • 8.4.1. Product Competitiveness Analysis: Upper Body Medical Exoskeleton
      • 8.4.1.1. Product Competitiveness Analysis: Upper Body, Powered Exoskeleton
      • 8.4.1.2. Product Competitiveness Analysis: Upper Body, Passive Exoskeleton
      • 8.4.1.3. Product Competitiveness Analysis: Upper Body, Hybrid Exoskeleton
    • 8.4.2. Product Competitiveness Analysis: Lower Body Exoskeleton
      • 8.4.2.1. Product Competitiveness Analysis: Lower Body, Powered Exoskeleton
      • 8.4.2.2. Product Competitiveness Analysis: Lower Body, Passive Exoskeleton
      • 8.4.2.3. Product Competitiveness Analysis: Lower Body, Hybrid Exoskeleton
    • 8.4.3. Product Competitiveness Analysis: Full Body Medical Exoskeleton

9. EXOSKELETON DEVELOPERS: DETAILED COMPANY PROFILES

  • 9.1. Chapter Overview
  • 9.2. CYBERDYNE
    • 9.2.1. Company Overview
    • 9.2.2. Financial Information
    • 9.2.3. Product Portfolio
    • 9.2.4 Recent Developments and Future Outlook
  • 9.3. Ekso Bionics
    • 9.3.1. Company Overview
    • 9.3.2. Financial Information
    • 9.3.3. Product Portfolio
    • 9.3.4 Recent Developments and Future Outlook
  • 9.4. ExoAtlet
    • 9.4.1. Company Overview
    • 9.4.2. Product Portfolio
    • 9.4.3. Recent Developments and Future Outlook
  • 9.5. Fourier Intelligence
    • 9.5.1. Company Overview
    • 9.5.2. Product Portfolio
    • 9.5.3. Recent Developments and Future Outlook
  • 9.6. Gloreha
    • 9.6.1. Company Overview
    • 9.6.2. Product Portfolio
    • 9.6.3. Recent Developments and Future Outlook
  • 9.7. Guangzhou Yikang
    • 9.7.1. Company Overview
    • 9.7.2. Product Portfolio
    • 9.7.3. Recent Developments and Future Outlook
  • 9.8. Hexar Humancare
    • 9.8.1. Company Overview
    • 9.8.2. Product Portfolio
    • 9.8.3. Recent Developments and Future Outlook
  • 9.9. Hocoma
    • 9.9.1. Company Overview
    • 9.9.2. Product Portfolio
    • 9.9.3. Recent Developments and Future Outlook
  • 9.10. Panasonic
    • 9.10.1. Company Overview
    • 9.10.2. Financial Information
    • 9.10.3. Product Portfolio
    • 9.10.4. Recent Developments and Future Outlook
  • 9.11. Tyromotion
    • 9.11.1. Company Overview
    • 9.11.2. Product Portfolio
    • 9.11.3. Recent Developments and Future Outlook

10. EXOSKELETON DEVELOPERS: TABULATED COMPANY PROFILES

  • 10.1. Chapter Overview
  • 10.2. Bionic Yantra
  • 10.3. MediTouch
  • 10.4. Milebot Robotics
  • 10.5. Myomo
  • 10.6. Neofect
  • 10.7. NextStep Robotics
  • 10.8. ReWalk Robotics
  • 10.9. Rex Bionics
  • 10.10. Roam Robotics
  • 10.11. Trexo Robotics
  • 10.12. U&O Technologies

11. MEDICAL EXOSKELETON: PARTNERSHIPS AND COLLABORATIONS

  • 11.1. Chapter Overview
  • 11.2. Partnership Models
  • 11.3. Medical Exoskeleton: List of Partnerships and Collaborations
    • 11.3.1. Analysis by Year of Partnership
    • 11.3.2. Analysis by Type of Partnership
    • 11.3.3. Analysis by Year and Type of Partnership
    • 11.3.4. Analysis by Type of Partner
    • 11.3.5. Analysis by Year of Partnership and Type of Partner
    • 11.3.6. Analysis by Purpose of Partnership
    • 11.3.7. Analysis by Geography
      • 11.3.7.1. Local and International Agreements
      • 11.3.7.2. Intracontinental and Intercontinental Agreements
      • 11.3.7.3. Most Active Players: Distribution by Number of Partnerships

12. PATENT ANALYSIS

  • 12.1. Chapter Overview
  • 12.2. Scope and Methodology
  • 12.3. Exoskeleton: Patent Analysis
    • 12.3.1. Analysis by Patent Application Year
    • 12.3.2. Analysis by Patent Publication Year
    • 12.3.3. Analysis by Type of Patent and Patent Publication Year
    • 12.3.4. Analysis by Publication Time
    • 12.3.5. Analysis by Patent Jurisdiction
    • 12.3.6. Analysis by CPC symbols
    • 12.3.7. Analysis by Type of Applicant
    • 12.3.8. Leading Players: Analysis by Number of Patents
    • 12.3.9. Leading Patent Assignees: Analysis by Number of Patents
  • 12.4. Exoskeleton: Patent Benchmarking
    • 12.4.1. Analysis by Patent Characteristics
    • 12.4.2. Exoskeleton: Patent Valuation
  • 12.5. Leading Players by Number of Citations

13. BLUE OCEAN STRATEGY

  • 13.1. Overview of Blue Ocean Strategy
    • 13.1.1. Red Oceans
    • 13.1.2. Blue Oceans
    • 13.1.3. Comparison of Red Ocean Strategy and Blue Ocean Strategy
    • 13.1.4. Medical Exoskeleton: Blue Ocean Strategy and Shift Tools
      • 13.1.4.1. Strategy Canvas
      • 13.1.4.2. Pioneer-Migrator-Settler (PMS) Map
      • 13.1.4.3. Buyer Utility Map

14. MARKET IMPACT ANALYSIS: DRIVERS, RESTRAINTS, OPPORTUNITIES AND CHALLENGES

  • 14.1. Chapter Overview
  • 14.2. Market Drivers
  • 14.3. Market Restraints
  • 14.4. Market Opportunities
  • 14.5. Market Challenges
  • 14.6. Conclusion

15. GLOBAL EXOSKELETON MARKET

  • 15.1. Chapter Overview
  • 15.2. Forecast Methodology and Key Assumptions
  • 15.3. Global Exoskeleton Market, Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
    • 15.3.1. Scenario Analysis
  • 15.4. Key Market Segmentations
  • 15.5. Dynamic Dashboard

16. EXOSKELETON MARKET, BY BODY PART COVERED

  • 16.1. Chapter Overview
  • 16.2. Forecast Methodology and Key Assumptions
  • 16.3. Medical Upper Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.4. Medical Lower Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.5. Medical Full Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.6. Non-Medical Upper Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.7. Non-Medical Lower Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.8. Non-Medical Full Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.9. Overall Upper Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.10. Overall Lower Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.11. Overall Full Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.12. Data Triangulation and Validation

17. EXOSKELETON MARKET, BY MODE OF OPERATION

  • 17.1. Chapter Overview
  • 17.2. Forecast Methodology and Key Assumptions
  • 17.3. Medical Powered Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.4. Medical Passive Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.5. Medical Hybrid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.6. Non-Medical Powered Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.7. Non-Medical Passive Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.8. Non-Medical Hybrid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.9. Overall Powered Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.10. Overall Passive Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.11. Overall Hybrid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.12. Data Triangulation and Validation

18. EXOSKELETON MARKET, BY THEIR FORM

  • 18.1. Chapter Overview
  • 18.2. Forecast Methodology and Key Assumptions
  • 18.3. Medical Rigid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.4. Medical Soft Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.4. Non-Medical Rigid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.5. Non-Medical Soft Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.6. Overall Rigid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.7. Overall Soft Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.8. Data Triangulation and Validation

19. EXOSKELETON MARKET, BY THEIR MOBILITY

  • 19.1. Chapter Overview
  • 19.2. Forecast Methodology and Key Assumptions
  • 19.3. Medical Fixed/ Supported Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 19.4. Medical Mobile / Overground Walking Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 19.5. Data Triangulation and Validation

20. EXOSKELETON MARKET, BY END USERS

  • 20.1. Chapter Overview
  • 20.2. Forecast Methodology and Key Assumptions
  • 20.3. Medical Exoskeleton by Patients: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.4. Medical Exoskeleton by Healthcare Providers: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.5. Non-Medical Exoskeleton by Industry Workers: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.6. Non-Medical Exoskeleton by Military Personnel: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.7. Non-Medical Exoskeleton by Others: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.8. Overall Exoskeleton by End Users: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.9. Data Triangulation and Validation

21. EXOSKELETON MARKET, BY GEOGRAPHY

  • 21.1. Chapter Overview
  • 21.2. Forecast Methodology and Key Assumptions
  • 21.3. North America: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 21.4. Europe: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 21.5. Asia-Pacific: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 21.6. Rest of the World: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 21.7. Data Triangulation and Validation

22. CONCLUSION

23. EXECUTIVE INSIGHTS

  • 23.1. Chapter Overview
  • 23.2. ABLE Human Motion
    • 23.2.1. Company Snapshot
    • 23.2.2. Interview Transcript: Alfons Carnicero Carmona, Co-Founder and Chief Executive Officer
  • 23.3. Archelis
    • 23.3.1. Company Snapshot
    • 23.3.2. Interview Transcript: Katsuhiko Saho, Director of Business Planning and Development
  • 23.4. Biomotum
    • 23.4.1. Company Snapshot
    • 23.4.2. Interview Transcript: Phil Astrachan, Vice President of Sales and Marketing
  • 23.5. Bionic Power
    • 23.5.1. Company Snapshot
    • 23.5.2. Interview Transcript: Rob Nathan, Marketing and Design Manager
  • 23.6. Bionic Yantra
    • 23.6.1. Company Snapshot
    • 23.6.2. Interview Transcript: Shivakumar Nagarajan, Founder and Director

24. APPENDIX 1: BLUE OCEAN STRATEGY AND SHIFT TOOLS

25. APPENDIX 2: TABULATED DATA

26. APPENDIX 3: LIST OF COMPANIES AND ORGANIZATION