封面
市場調查報告書
商品編碼
1284207

到 2028 年的空間傳感器和執行器市場預測——按平台、產品類型、應用、最終用戶和地區進行的全球分析

Space Sensors and Actuators Market Forecasts to 2028 - Global Analysis By Platform, Product Type, Application, End User and Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 175+ Pages | 商品交期: 2-3個工作天內

價格

根據Stratistics MRC,2022年全球空間傳感器和執行器市場規模將達到27億美元,預計2028年將達到61億美元,預測期內增長14.7%。預計以 % 的 CAGR 增長。

放置在空間平台(例如衛星或漫遊車)上的設備稱為空間傳感器。 它用於監測條件並收集有關地球和天體的信息。

市場動態:

驅動程序

在新太空項目中使用太陽能 MEMS 技術

為了正確運行和優化衛星,Solar MEMS 利用應用於高精度太陽能傳感器的 MEMS(微機電系統)技術。 太陽能傳感器有許多地理應用,包括光源跟蹤、指向系統、姿態控制、太陽輻射測量、太陽跟蹤平台控制器和無人機姿態確定。 用於研究、衛星和光伏等尖端應用的太陽能傳感器的設計、製造和商業化是太陽能 MEMS 技術的主要目標。 Solar MEMS 製造了 100 多個飛行模型傳感器,並在全球範圍內擁有強大的客戶群,是納米衛星和微型衛星太空任務的領先太陽能傳感器供應商之一。

約束

輻射危害和腐蝕性氣體危害

一旦航天器離開地球大氣層,環境就會發生巨大變化,需要電子設備、傳感器和執行器對溫度和壓力的變化做出響應。 受污染的表面可能會導致靜電放電。 衛星會因充電和放電而受到傷害。 衛星充電描述了衛星靜電勢相對於衛星周圍低密度等離子體的變化。 電荷的大小取決於衛星的形狀和軌道。 根據傳感器和執行器的安裝位置,可能需要結合冷卻設備和絕緣材料。 不斷在太空中流動並被□□太陽磁暴放大的質子和宇宙射線構成了瞬態輻射的大部分。 影響傳感器的輻射會導致錯誤的電流在船內流動,破壞控制執行器和傳感器的計算機芯片。

市場機會:

在空間應用中擴大靜電致動器的採用

靜電致動器有時稱為線控動力裝置,它採用獨立裝置,完全依靠電力而不是液壓系統運行。 這些通常包括伺服電機、液壓泵、蓄能器和伺服執行器。 EHA 簡化了系統配置,提高了安全性和可靠性,並且有一個獨立的泵,無需額外的液壓泵和管道。 它還具有內置泵,無需額外的液壓泵和液壓管。 這項技術最初是為航空工業開發的,但現在被廣泛應用於太空等經常使用液壓的領域。 EHA(電液靜壓)執行器是一種雙重容錯解決方案,可實現高度可靠的轉向控制。 EHA 執行器使用齒輪驅動電機,泵的輸出直接移動普通液壓活塞。

威脅:

用於地面任務的傳感器和執行器技術的成熟度

GEO 之外的載人和無人太空探索在技術、政治和程序方面都是一項艱鉅的任務。 該任務提供了一個機會,可以了解更多信息並展示傳感器和執行器技術,以應對即將到來的載人火星任務的挑戰。 此外,設計和集成複雜設備需要專業知識、經過驗證的方法和特定工具包,所有這些都會增加設備的總體成本。 因此,向更現代技術設備的過渡預計會受到產品成本高的阻礙。

COVID-19 的影響:

COVID-19 的爆發對全球經濟產生了負面影響。 這一次,航天工業的主要參與者似乎正在解決這個問題。 主要市場進入者正面臨艱難時期,包括生產放緩和衛星發射延遲。 然而,供應鏈中斷和生產停工已導致航天工業的二級和三級供應商出現重大收入損失。 結果,冠狀病毒的流行使空間傳感器和執行器市場陷入困境。

預計傳感器行業在預測期內將成為最大的行業

據估計,傳感器領域將經歷有利可圖的增長。 與其他航天器和漫遊車應用相比,空間傳感器和執行器非常複雜。 對於每個操作,它們都根據特定技術使用。 為了測量輻射對最終用戶的影響,空間觀測衛星包括基於 MEMS 的執行器、抗輻射傳感器、用於成像的電光傳感器、用於電池充電的太陽能電池,以及用於檢測到達航天器的輻射量的蓋革傳感器。它有一個櫃檯。 對於商業和環境任務,航天器需要確保航天器、火箭、行星際探測器、著陸器和漫遊車等應用按預期運行,具有最高的可靠性和盡可能低的成本。傳感器是必不可少的。

商業部門預計在預測期內將經歷最高的複合年增長率。

在預測期內,商業領域預計將以最快的複合年增長率增長。 新太空工業、衛星運營商和所有者、太空機器人解決方案服務提供商、太空探索公司以及衛星和火箭製造商構成了商業部門的其他部門。 由於太空業務日益私有化,新一代太空公司應運而生。 國家航天局一直與這些私營公司中最繁榮的公司合作並為其提供支持。 新的航天工業及其附屬機構承諾通過開發各種空間傳感器和執行器技術來降低進入太空的成本。 這將實現更低的風險、更快的商業模式、持續的改進,並最終為所有人創造更豐富的太空經濟。

市場份額最高的地區

在預測期內,亞太地區預計將佔據最大的市場份額。 中國對工業現代化的政治推動正在創造對智能傳感器、無線傳感器網絡和更好的執行器等智能製造產品的大量需求。 中國工業部門不斷增長的需求吸引了國際傳感器和執行器技術供應商的興趣。 高端機床、智能傳感器和其他技術在中國行業的需求量非常大。 在印度,包括物聯網在內的新傳感器技術的使用進展迅速。 印度有機會擴大這些技術的部署並實現規模經濟。 印度政府通過創造性的努力促進新技術的使用。

複合年增長率最高的地區:

預計北美在預測期內的複合年增長率最高。 在北美,現代衛星的使用得到了強有力的政治支持。 推動該地區空間傳感器和執行器市場擴張的另一個關鍵因素是,許多頂級空間傳感器和執行器開發商都集中在北美,與政府組織就國防相關問題進行互動。已經建立了一項協議,以

主要發展:

2021 年 8 月,運動控制技術市場領導者派克漢尼汾公司宣布收購航空航天和國防領域運動控制技術供應商 Meggitt PLC。

這份報告提供了什麼

  • 區域和國家/地區細分市場份額評估
  • 向新進入者提出戰略建議
  • 2020、2021、2022、2025 和 2028 年的綜合市場數據
  • 市場趨勢(驅動因素、制約因素、機會、威脅、挑戰、投資機會、建議)
  • 根據市場預測在關鍵業務領域提出戰略建議
  • 競爭格局映射關鍵共同趨勢。
  • 公司簡介,包括詳細的戰略、財務狀況和近期發展
  • 映射最新技術進步的供應鏈趨勢

免費定制優惠:

購買此報告的客戶將獲得以下免費定制選項之一:

  • 公司簡介
    • 其他市場參與者的綜合概況(最多 3 家公司)
    • 主要參與者的 SWOT 分析(最多 3 家公司)
  • 區域細分
    • 根據客戶的要求對主要國家/地區的市場估計/預測/複合年增長率(注意:基於可行性檢查)。
  • 競爭基準
    • 根據產品組合、區域影響力和戰略聯盟對主要參與者進行基準測試

內容

第 1 章執行摘要

第二章前言

  • 概覽
  • 利益相關者
  • 調查範圍
  • 調查方法
    • 數據挖掘
    • 數據分析
    • 數據驗證
    • 研究方法
  • 調查來源
    • 主要研究來源
    • 二級研究來源
    • 假設

第三章市場趨勢分析

  • 司機
  • 約束因素
  • 機會
  • 威脅
  • 產品分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19 的影響

第 4 章波特五力分析

  • 供應商的議價能力
  • 買家的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭公司之間的敵對關係

第 5 章全球空間傳感器和執行器市場:按平台

  • 漫遊車/航天器著陸器
  • 衛星
  • 運載火箭
  • 膠囊或貨物
  • 星際飛船和探測器
  • 其他平台

第 6 章按產品類型劃分的全球空間傳感器和執行器市場

  • 執行器
    • 動作類型
      • 旋轉執行器
    • 電源使用類型
      • 機械執行器
      • 液壓執行器
      • 磁致動器
      • 氣動執行器
      • 電動執行器
  • 傳感器
    • 扭矩傳感器
    • 壓力傳感器
    • 化學傳感器
    • 溫度傳感器
    • 圖像傳感器
    • 位置傳感器
    • 水平傳感器

第 7 章全球空間傳感器和執行器市場:按應用

  • 太陽能電池驅動機構
  • 姿態和軌道控制系統
  • 命令和數據處理系統
  • 螺旋槳進給系統
  • 熱力系統
  • 火箭發動機
  • 跟蹤和命令
  • 地面機動性和導航系統
  • 遙測
  • 發動機氣門控制系統
  • 太陽能電池驅動機構
  • 錨點/對接系統
  • 推力矢量控制系統
  • 機械臂或機械手系統
  • 其他應用

第 8 章全球空間傳感器和執行器市場:按最終用戶分類

  • 政府和國防
  • 商業
  • 其他最終用戶

第 9 章。全球空間傳感器和執行器市場:按地區

  • 北美
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 意大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳大利亞
    • 新西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙特阿拉伯
    • 阿拉伯聯合酋長國
    • 卡塔爾
    • 南非
    • 其他中東和非洲地區

第10章主要發展

  • 合同、夥伴關係、協作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第11章公司簡介

  • Schlumberger Limited
  • Teledyne UK Limited
  • Parker-Hannifin Corporation
  • Texas Instruments Incorporated
  • Bosch Sensortec GmbH
  • SMC Corporation
  • Renesas Electronics Corporation
  • Emerson Electric Co.
  • Pegasus Actuators GmbH
  • TE Connectivity
  • Honeywell International Inc.
  • Northrop Grumman Corporation
  • Bradford Engineering B.V.
  • Siemens
Product Code: SMRC23039

According to Stratistics MRC, the Global Space Sensors and Actuators Market is accounted for $2.7 billion in 2022 and is expected to reach $6.1 billion by 2028 growing at a CAGR of 14.7% during the forecast period. A device put on a space platform, such as a satellite, rover, or other object, is called a space sensor. It is used to gather information and keep an eye on both Earthly and celestial circumstances.

Market Dynamics:

Driver:

Use of solar MEMS technology in new space projects

For proper operation and satellite optimisation, Solar MEMS utilise Micro-Electro-Mechanical Systems (MEMS) technology applied to high-precision solar sensors. Numerous geographical applications for solar sensors exist, including light-source tracking, pointing systems, attitude control, measurements of the sun's radiation, solar tracking platform controllers, drone attitude determination, and many more. The design, creation, and commercialization of sun sensors for cutting-edge uses like research, satellites, or solar power generation are the main goals of solar MEMS technology. With over 100 flight model sensors produced and a firm position with clients across the world, Solar MEMS is one of the primary sun sensor suppliers for nanosat and microsat missions in the space sector.

Restraint:

Hazard posed due to radiation damage and corrosive atmospheres

When a spacecraft exits the earth's atmosphere, the environment changes significantly, requiring electronics, sensors, and actuators to adapt to variations in temperature and pressure. Surfaces that are much polluted might result in electrostatic discharge. Satellites can be harmed by charging and discharging. Satellite charging describes a change in a satellite's electrostatic potential with respect to the low-density plasma around it. The size of the charge depends on the shape and orbit of the satellite. Engineers incorporate either cooling systems or insulators depending on where in space the sensors and actuators are meant to work. Protons and cosmic rays, which are continually streaming across space and are amplified by magnetic storms on the Sun, make up the majority of transient radiation. The impact of radiation on sensors may result in erroneous currents flowing through the craft or potentially the destruction of computer chips that control both actuators and sensors.

Opportunity:

Increasing adoption of electro-hydrostatic actuators in space applications

Electro hydrostatic Actuators, sometimes referred to as power by wire devices, are replacing hydraulic systems with standalone devices that run only on electricity. They often contain servomotors, hydraulic pumps, accumulators, and servo actuators. EHAs simplify system topologies, increase safety and dependability, and remove the need for extra hydraulic pumps and tubing thanks to its built-in pump. Despite being primarily developed for the aircraft industry, this technology has now been used to a number of other fields, including space, where hydraulic power is frequently used. Electro hydrostatic (EHA) actuators offer solutions for two-fault tolerant, exceptionally dependable steering control. In EHA actuation, the motor is driven by gears, and the output of the pump directly moves a typical hydraulic piston.

Threat:

Sensor and actuator technology maturity for surface missions

Releasing manned and unmanned space exploration to locations outside of GEO is a technically challenging, politically challenging, and programmatically challenging endeavour. The mission offers chances to learn more about and showcase sensor and actuator technologies that address the difficulties of upcoming human missions to Mars. Additionally, the designing and integration of complicated devices requires specialised knowledge, a solid methodology, and a specific toolkit, all of which raise the price of the devices as a whole. As a result, it is anticipated that the transfer to more modern technical equipment would be hindered by the high cost of the products.

COVID-19 Impact:

The worldwide economy has been negatively impacted by the COVID-19 outbreak. The major space industry participants appear to be handling the present issue. The key market participants have had difficulties including production slowdowns, postponed satellite launches, and others. However, owing to supply chain disruption and a halt in production, tier 2 and tier 3 suppliers in the space industry saw a significant loss in income. As a result, the market for space sensors and actuators suffered as a result of the corona virus epidemic.

The sensors segment is expected to be the largest during the forecast period

The sensors segment is estimated to have a lucrative growth. Compared to other spacecraft and rover applications, space sensors and actuators are complex. For each operation, they are utilised depending on a certain technology. For measuring the impact of radiation on end users, space observation satellites feature MEMS-based actuators, radiation-hardened sensors, electro-optical sensors for imaging, solar cells to charge the battery, and a Geiger counter to detect the quantity of radiation reaching the spacecraft. For commercial and environmental missions, space sensors are essential in ensuring that spacecraft, launch vehicles, interplanetary probes, and lander or rover applications operate as intended, with the highest level of dependability, and at the lowest feasible cost.

The Commercial segment is expected to have the highest CAGR during the forecast period

The Commercial segment is anticipated to witness the fastest CAGR growth during the forecast period. The NewSpace industry, satellite operators & owners, space robotic solution service providers, space exploration firms, and satellite and launch vehicle manufacturers make up the additional divisions of the commercial segment. A new generation of space enterprises has emerged as a result of the rising privatisation of space operations. National space agencies have consistently worked with and supported the most prosperous of these private businesses. The New Space industry and its affiliated businesses promise to lower the cost of access to space through developments in a variety of space sensor and actuator technologies. This will enable lower-risk, quicker-moving business models that will enable continual enhancements and eventually lead to a more prosperous space economy for all.

Region with highest share:

Asia Pacific is projected to hold the largest market share during the forecast period. A lot of demand for smart manufacturing goods, such as smart sensors, wireless sensor networks, better actuators, etc., is generated by China's political drive for industrial modernisation. The expanding demand from China's industrial sector is attracting the attention of international providers of sensors and actuator technology. High-end machine tools, intelligent sensors, and other technology are in extremely high demand within the Chinese sector. IoT and other new sensor technologies are being used quickly in India. The nation offers the chance to spread out the deployment of these technologies and achieve economies of scale. Through creative efforts, the Indian government is promoting the use of new technology.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period. The use of modern satellites is strongly backed politically in North America. Another important factor driving the expansion of the space sensors and actuators market in the area is the concentration of many top space sensor and actuator developers in North America, where there are established protocols for interacting with governmental organisations on defense-related issues.

Key players in the market:

Some of the key players profiled in the Space Sensors and Actuators Market include Schlumberger Limited, Teledyne UK Limited, Parker-Hannifin Corporation, Texas Instruments Incorporated, Bosch Sensortec GmbH, SMC Corporation, Renesas Electronics Corporation, Emerson Electric Co., Pegasus Actuators GmbH, TE Connectivity, Honeywell International Inc., Northrop Grumman Corporation, Bradford Engineering B.V. and Siemens.

Key Developments:

In August 2021, Parker Hannifin Corporation, a leading market player in motion and control technologies, announced the acquisition of Meggitt PLC, a company operating in aerospace and defense motion and control technologies.

Platforms Covered:

  • Rovers/Spacecraft Landers
  • Satellites
  • Launch Vehicle
  • Capsules Or Cargos
  • Interplanetary Spacecraft & Probes
  • Other Platforms

Product Types Covered:

  • Actuators
  • Sensors

Applications Covered:

  • Solar Array Drive Mechanism
  • Attitude And Orbital Control System
  • Command And Data Handling System
  • Propeller Feed System
  • Thermal System
  • Rocket Motors
  • Tracking And Command
  • Surface Mobility And Navigation System
  • Telemetry
  • Engine Valve Control System
  • Solar Array Drive Mechanism
  • Berthing And Docking System
  • Thrust Vector Control System
  • Robotic Arm or Manipulator System
  • Other Applications

End Users Covered:

  • Government & Defence
  • Commercial
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Space Sensors and Actuators Market, By Platform

  • 5.1 Introduction
  • 5.2 Rovers/Spacecraft Landers
  • 5.3 Satellites
  • 5.4 Launch Vehicle
  • 5.5 Capsules Or Cargos
  • 5.6 Interplanetary Spacecraft & Probes
  • 5.7 Other Platforms

6 Global Space Sensors and Actuators Market, By Product Type

  • 6.1 Introduction
  • 6.2 Actuators
    • 6.2.1 Type of Motion
      • 6.2.1.1 Rotary Actuators
      • 6.2.1.2 Linear Actuators
    • 6.2.2 Type of Power Used
      • 6.2.2.1 Mechanical Actuators
      • 6.2.2.2 Hydraulic Actuators
      • 6.2.2.3 Magnetic Actuators
      • 6.2.2.4 Pneumatic Actuators
      • 6.2.2.5 Electrical Actuators
  • 6.3 Sensors
    • 6.3.1 Torque Sensors
    • 6.3.2 Pressure Sensors
    • 6.3.3 Chemical Sensors
    • 6.3.4 Temperature Sensors
    • 6.3.5 Image Sensors
    • 6.3.6 Position Sensors
    • 6.3.7 Level Sensors

7 Global Space Sensors and Actuators Market, By Application

  • 7.1 Introduction
  • 7.2 Solar Array Drive Mechanism
  • 7.3 Attitude And Orbital Control System
  • 7.4 Command And Data Handling System
  • 7.5 Propeller Feed System
  • 7.6 Thermal System
  • 7.7 Rocket Motors
  • 7.8 Tracking And Command
  • 7.7 Surface Mobility And Navigation System
  • 7.10 Telemetry
  • 7.11 Engine Valve Control System
  • 7.12 Solar Array Drive Mechanism
  • 7.13 Berthing And Docking System
  • 7.14 Thrust Vector Control System
  • 7.15 Robotic Arm or Manipulator System
  • 7.16 Other Applications

8 Global Space Sensors and Actuators Market, By End User

  • 8.1 Introduction
  • 8.2 Government & Defence
  • 8.3 Commercial
  • 8.4 Other End Users

9 Global Space Sensors and Actuators Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Schlumberger Limited
  • 11.2 Teledyne UK Limited
  • 11.3 Parker-Hannifin Corporation
  • 11.4 Texas Instruments Incorporated
  • 11.5 Bosch Sensortec GmbH
  • 11.6 SMC Corporation
  • 11.7 Renesas Electronics Corporation
  • 11.8 Emerson Electric Co.
  • 11.9 Pegasus Actuators GmbH
  • 11.10 TE Connectivity
  • 11.11 Honeywell International Inc.
  • 11.12 Northrop Grumman Corporation
  • 11.13 Bradford Engineering B.V.
  • 11.14 Siemens

List of Tables

  • Table 1 Global Space Sensors and Actuators Market Outlook, By Region (2020-2028) ($MN)
  • Table 2 Global Space Sensors and Actuators Market Outlook, By Platform (2020-2028) ($MN)
  • Table 3 Global Space Sensors and Actuators Market Outlook, By Rovers/Spacecraft Landers (2020-2028) ($MN)
  • Table 4 Global Space Sensors and Actuators Market Outlook, By Satellites (2020-2028) ($MN)
  • Table 5 Global Space Sensors and Actuators Market Outlook, By Launch Vehicle (2020-2028) ($MN)
  • Table 6 Global Space Sensors and Actuators Market Outlook, By Capsules Or Cargos (2020-2028) ($MN)
  • Table 7 Global Space Sensors and Actuators Market Outlook, By Interplanetary Spacecraft & Probes (2020-2028) ($MN)
  • Table 8 Global Space Sensors and Actuators Market Outlook, By Other Platforms (2020-2028) ($MN)
  • Table 9 Global Space Sensors and Actuators Market Outlook, By Product Type (2020-2028) ($MN)
  • Table 10 Global Space Sensors and Actuators Market Outlook, By Actuators (2020-2028) ($MN)
  • Table 11 Global Space Sensors and Actuators Market Outlook, By Type of Motion (2020-2028) ($MN)
  • Table 12 Global Space Sensors and Actuators Market Outlook, By Rotary Actuators (2020-2028) ($MN)
  • Table 13 Global Space Sensors and Actuators Market Outlook, By Linear Actuators (2020-2028) ($MN)
  • Table 14 Global Space Sensors and Actuators Market Outlook, By Type of Power Used (2020-2028) ($MN)
  • Table 15 Global Space Sensors and Actuators Market Outlook, By Mechanical Actuators (2020-2028) ($MN)
  • Table 16 Global Space Sensors and Actuators Market Outlook, By Hydraulic Actuators (2020-2028) ($MN)
  • Table 17 Global Space Sensors and Actuators Market Outlook, By Magnetic Actuators (2020-2028) ($MN)
  • Table 18 Global Space Sensors and Actuators Market Outlook, By Pneumatic Actuators (2020-2028) ($MN)
  • Table 19 Global Space Sensors and Actuators Market Outlook, By Electrical Actuators (2020-2028) ($MN)
  • Table 20 Global Space Sensors and Actuators Market Outlook, By Sensors (2020-2028) ($MN)
  • Table 21 Global Space Sensors and Actuators Market Outlook, By Torque Sensors (2020-2028) ($MN)
  • Table 22 Global Space Sensors and Actuators Market Outlook, By Pressure Sensors (2020-2028) ($MN)
  • Table 23 Global Space Sensors and Actuators Market Outlook, By Chemical Sensors (2020-2028) ($MN)
  • Table 24 Global Space Sensors and Actuators Market Outlook, By Temperature Sensors (2020-2028) ($MN)
  • Table 25 Global Space Sensors and Actuators Market Outlook, By Image Sensors (2020-2028) ($MN)
  • Table 26 Global Space Sensors and Actuators Market Outlook, By Position Sensors (2020-2028) ($MN)
  • Table 27 Global Space Sensors and Actuators Market Outlook, By Level Sensors (2020-2028) ($MN)
  • Table 28 Global Space Sensors and Actuators Market Outlook, By Application (2020-2028) ($MN)
  • Table 29 Global Space Sensors and Actuators Market Outlook, By Solar Array Drive Mechanism (2020-2028) ($MN)
  • Table 30 Global Space Sensors and Actuators Market Outlook, By Attitude And Orbital Control System (2020-2028) ($MN)
  • Table 31 Global Space Sensors and Actuators Market Outlook, By Command And Data Handling System (2020-2028) ($MN)
  • Table 32 Global Space Sensors and Actuators Market Outlook, By Propeller Feed System (2020-2028) ($MN)
  • Table 33 Global Space Sensors and Actuators Market Outlook, By Thermal System (2020-2028) ($MN)
  • Table 34 Global Space Sensors and Actuators Market Outlook, By Rocket Motors (2020-2028) ($MN)
  • Table 35 Global Space Sensors and Actuators Market Outlook, By Tracking And Command (2020-2028) ($MN)
  • Table 36 Global Space Sensors and Actuators Market Outlook, By Surface Mobility And Navigation System (2020-2028) ($MN)
  • Table 37 Global Space Sensors and Actuators Market Outlook, By Telemetry (2020-2028) ($MN)
  • Table 38 Global Space Sensors and Actuators Market Outlook, By Engine Valve Control System (2020-2028) ($MN)
  • Table 39 Global Space Sensors and Actuators Market Outlook, By Solar Array Drive Mechanism (2020-2028) ($MN)
  • Table 40 Global Space Sensors and Actuators Market Outlook, By Berthing And Docking System (2020-2028) ($MN)
  • Table 41 Global Space Sensors and Actuators Market Outlook, By Thrust Vector Control System (2020-2028) ($MN)
  • Table 42 Global Space Sensors and Actuators Market Outlook, By Robotic Arm or Manipulator System (2020-2028) ($MN)
  • Table 43 Global Space Sensors and Actuators Market Outlook, By Other Applications (2020-2028) ($MN)
  • Table 44 Global Space Sensors and Actuators Market Outlook, By End User (2020-2028) ($MN)
  • Table 45 Global Space Sensors and Actuators Market Outlook, By Government & Defence (2020-2028) ($MN)
  • Table 46 Global Space Sensors and Actuators Market Outlook, By Commercial (2020-2028) ($MN)
  • Table 47 Global Space Sensors and Actuators Market Outlook, By Other End Users (2020-2028) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.