2030 年材料資訊學市場預測:按材料類型、技術、用途和地區進行的全球分析
市場調查報告書
商品編碼
1339926

2030 年材料資訊學市場預測:按材料類型、技術、用途和地區進行的全球分析

Materials Informatics Market Forecasts to 2030 - Global Analysis By Material Type (Chemicals, Elements and Other Material Types), Technique (Digital Annealer, Deep Tensor and Genetic Algorithm), Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 175+ Pages | 商品交期: 2-3個工作天內

價格

據Stratistics MRC預測,2023年全球材料資訊學市場規模將達到1.29億美元,預計到2030年將達到4.18億美元,預測期內年複合成長率為18.3%。

通過利用統計分析等資訊學技術,材料資訊學旨在提高材料創建的有效性。 “材料資訊學”將機器學習與凝聚態理論、實驗、模擬、數據庫、雲端運算和安全等各個領域的技術相結合。由於這兩個領域技術的進步,材料資訊學(也稱為資訊科學和材料科學的融合)擴大被使用。通過創建可以高速處理大量資料的環境,正在促進材料資訊學的使用。

增加機器學習和資料挖掘的使用

資料挖掘正在徹底改變材料科學領域,開闢令人興奮的新視角。此外,各種型態材料資料的新資料挖掘思想的持續改進和材料特性數據庫的激增預計將繼續影響材料設計。此外,材料資訊學行業中資料挖掘和機器學習技術的日益使用可能會推動市場擴張達到新的成功高度。

高分子材料使用的障礙

與金屬、陶瓷和生物材料等其他材料相比,高分子材料具有材料資訊學領域獨有的特性,這使得構建一致的數據庫變得困難。由於聚合物型態多種多樣,這些聚合物材料非常複雜並且難以使用計算方法命名。聚合物類別還包括共聚、聚合物共混物、線性和支化聚合物、聚合物共混物等,並用於材料資訊學,這增加了製造產品過程的複雜性並阻礙了市場成長。

高熵合金的研製與資料分析

在材料資訊學領域,合金材料正在經歷巨大的擴張。此外,近年來,材料資訊學已成為材料和設計發現的強大工具。它用於資料科學應用,以解決與材料科學和工程相關的挑戰。這種最先進的技術方法在許多情況下被利用,以凝聚巨大的實驗限制空間來尋找和探索新發現的材料,從而為市場創造了廣泛的成長機會。

缺乏既定的指導方針和規則以及最少的技術資源

具有必要技能的專家對於理解材料資訊學並將整合到所需的應用中至關重要。這種基本能力包括算術和統計,以理解用於存儲和收集資料的數據庫,以及處理不同類型和數量的資料的規則。這需要引入和整合更精確的系統。這是潛在最終用戶廣泛採用這些解決方案的主要障礙。如今,化學和製藥、材料科學和製造等許多應用領域仍然大多遵循傳統方法,無論其有效性如何。這是因為沒有全面的計劃阻礙了市場的成長。

COVID-19 的影響:

2020 年初,COVID-19 的傳播極大地改變了包括材料科學和研究在內的多個行業的功能和未來性。由於 COVID-19 病毒成為研究對象,其他行業也受到了影響。此外,國家封鎖和製造業停工對許多行業的研究產生了負面影響,再次減緩了材料資訊行業的擴張。

無機材料領域預計將在預測期內成為最大的領域

無機材料領域預計將出現良好成長,主要是因為包括電子、化工、食品、造紙等行業在內的許多重要業務高度依賴無機材料。另一方面,由於客戶對環保和工業上更兼容的有機和混合產品的偏好不斷增加,混合材料在預期期間出現了巨大的成長。

材料科學領域預計在預測期內年複合成長率最高

材料科學領域預計在預測期內年複合成長率最高。新材料的發現和開發,材料資訊學方法可以應用於材料科學應用。材料科學使用各種材料和奈米技術。這使得材料科學中的計算挑戰變得更加困難。此外,在開發具有特定所需功能的新材料方面,該主題正在取得進展。該領域使用各種材料、建模方法、模擬工具以及基於物理和機器學習的模型來簡化材料創建、管理和最佳化的過程。

佔比最大的地區:

由於材料科學和分析領域的投資增加,電子、化學和許多其他領域的研發活動活性化,預計北美將在預測期內佔據最大的市場佔有率,從而導致 2020 年全球材料成長。佔據了Zinformatics 市場的大部分市場收入佔有率。憑藉其技術領導者的地位,該地區在人工智慧 (AI)、機器學習 (ML)、巨量資料和資料分析等最尖端科技的使用方面也處於領先地位。資料科學、機器學習和人工智慧的整合創造了市場潛力的新範式。

複合年複合成長率最高的地區:

由於多種要素,亞太地區預計將在預測期內呈現最高的年複合成長率,其中包括該地區強勁的工業和經濟擴張,這推動了汽車、電子和建築等行業對先進材料的需求。將會完成。此外,中國、印度和日本等國家正在大力投資材料科學和技術等研發。材料資訊學在亞太地區的擴張還得益於豐富的資料科學和材料科學人才以及政府支持研發的措施。

免費客製化服務:

訂閱此報告的客戶將收到以下免費客製化選項之一:

  • 公司簡介
    • 其他市場參與者的綜合分析(最多 3 家公司)
    • 主要企業SWOT分析(最多3家企業)
  • 區域分割
    • 根據客戶興趣對主要國家的市場估計、預測和年複合成長率(注:基於可行性檢查)
  • 競爭標杆管理
    • 根據產品系列、地域分佈和戰略聯盟對主要企業進行基準測試

目錄

第1章 執行摘要

第2章 前言

  • 抽象的
  • 利益相關者
  • 調查範圍
  • 調查方法
    • 資料挖掘
    • 資料分析
    • 資料檢驗
    • 研究途徑
  • 調查來源
    • 主要調查來源
    • 二次調查來源
    • 假設

第3章 市場趨勢分析

  • 促進因素
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 新興市場
  • 新型冠狀病毒感染疾病(COVID-19)的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭公司之間的敵對關係

第5章 全球材料資訊學市場:按材料類型

  • 化學品
  • 元素
  • 混合材料
    • 共聚物
    • 膠體
  • 無機材料
    • 金屬
    • 合金
    • 電池
    • 其他無機材料
  • 有機材料
    • 橡皮
    • 聚合物添加劑
    • 其他有機材料
  • 其他材料類型

第6章 全球材料資訊學市場:按技術分類

  • 數位退火機
  • 深張量
  • 統計分析
  • 遺傳算法

第7章 全球材料資訊學市場:按用途

  • 化學和製藥
  • 染料
  • 活力
  • 食品科學
  • 製造業
  • 材料科學
  • 紙漿
  • 其他用途

第8章 全球材料資訊學市場:按地區

  • 北美
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳大利亞
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲

第9章 進展

  • 契約、夥伴關係、協作和合資企業
  • 收購和合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第10章 公司簡介

  • Alpine Electronics Inc.
  • Phaseshift Technologies
  • Exabyte.io
  • Schrodinger
  • Materials Zone Ltd.
  • Mat3ra
  • BASF
  • Citrine Informatics
  • Nutonian Inc.
  • Dassault Systemes
  • Kebotix
  • AI Materia
  • Lumiant Corporation
  • Sun Innovations
  • Mitsubishi
  • Fujitsu
  • InSilixa
  • MRL Materials Resources LLC
Product Code: SMRC23634

According to Stratistics MRC, the Global Materials Informatics Market is accounted for $129 million in 2023 and is expected to reach $418 million by 2030 growing at a CAGR of 18.3% during the forecast period. By utilizing informatics techniques like statistical analysis, materials informatics aims to increase the effectiveness of material creation. Materials Informatics" combines machine learning with technology from a variety of domains, including theory of properties, experiments, simulations, databases, cloud computing, security, etc. Due to the advancement of technology in both domains, materials informatics also known as the confluence of information science and materials science has seen an increase in its use. The environment has permitted the high-speed handling of enormous volumes of data, which has promoted the use of materials informatics.

Market Dynamics:

Driver:

Increasing use of machine learning and data mining

The field of material science has undergone a revolution because to data mining, and exciting new prospects are now available. Additionally, it is anticipated that continual improvements in new data mining ideas for various forms of material data and the proliferation of material property databases will continue to have an influence on material design. Moreover, due to the growing use of data mining and machine learning technologies in the material informatics industry would propel market expansion to new heights of success.

Restraint:

Obstacles in the usage of polymer materials

When compared to other materials like metals, ceramics, or biomaterials, polymer materials have a unique trait in the field of material informatics that makes the building of a coherent database difficult. Due to the large variety of polymer morphologies, these polymer materials are extremely complicated, making it challenging to name them using computational methods. The polymer category, which also covers copolymerization, polymer mixing, linear versus branched polymers, and polymer blending are utilized for material informatics, adding complexity to the process of creating a product which impedes the growth of the market

Opportunity:

The development of high entropy alloys, and data analysis

For the materials informatics sector, alloy material has experienced exponential expansion, the field of many primary elements or high entropy that permits alloy formation. Additionally, materials informatics has become a potent tool for material and design discovery in recent years. It is employed in data science applications to tackle challenges related to material science and engineering. These cutting-edge technical methods are utilized in a number of contexts to condense vast experimental restriction spaces in order to locate or look for newly discovered materials thus creating a wide range of opportunities for the growth of the market.

Threat:

Lack of established guidelines and rules along with very few technical resources

Experts with the requisite skill set are essential for comprehending and smoothly integrating material informatics into necessary applications. These fundamental abilities include databases for storing and gathering data as well as arithmetic and statistics to comprehend rules for processing various sorts and amounts of data. Therefore, the system must be installed and integrated with more accuracy. This is a significant obstacle to the wider adoption of these solutions by potential end users. Currently, numerous application fields such as chemical & pharmaceutical, materials science and manufacturing are mostly continuing to follow conventional techniques, regardless of the effectiveness of these. This is because there is no overarching plan in place which is hampering the market growth.

COVID-19 Impact:

The functioning and future potential of several businesses, including material science and research, have been drastically altered by the dissemination of COVID-19 at the beginning of the year 2020. Other industries were influenced as a result of the COVID-19 virus being the subject of study. Additionally, the country's lockdown and standstill in manufacturing have had a detrimental influence on research in a number of industries, which has once again slowed the expansion of the material informatics industry.

The inorganic materials segment is expected to be the largest during the forecast period

The inorganic materials segment is estimated to have a lucrative growth, due to this is mostly because to the substantial reliance on inorganic materials that many significant businesses, including those in the electronics, chemicals, food, paper, and other sectors, have. On the other hand, hybrid materials see phenomenal growth throughout the anticipated time frames due to rising customer inclination for organic and hybrid products that are environmentally benign and also more industry-compatible.

The materials science segment is expected to have the highest CAGR during the forecast period

The materials science segment is anticipated to witness the highest CAGR growth during the forecast period. The discovery and development of novel materials, material informatics approaches can be applied in materials science applications. A variety of materials and nanotechnology are used in materials science. This makes computing issues in materials science more challenging. This subject also sees ongoing development into novel materials with certain desired functionality. To make the processes of material creation, management, and optimization simpler, various materials, modelling approaches, simulation tools, and physics-based and machine-learning models are utilized in this sector.

Region with largest share:

North America is projected to hold the largest market share during the forecast period owing to rising investments in the field of material science and analysis as well as rising R&D activities across numerous sectors including electronics, chemicals, and many others, North America held the majority of market revenue share in the global material informatics market in 2020. The area also takes the lead in the use of cutting-edge technologies including artificial intelligence (AI), machine learning (ML), big data, and data analytics due to its status as a technological leader. Data science, machine learning, and AI integration have created a new paradigm for market possibilities.

Region with highest CAGR:

Asia Pacific is projected to have the highest CAGR over the forecast period, owing to number of factors, including the area's strong industrial and economic expansion, which has raised demand for advanced materials across industries including automotive, electronics, and construction, the Asia-Pacific region is anticipated to have the largest growth throughout the projection period. Furthermore, nations like China, India, and Japan have made significant investments in research and development, including the science and technology of materials. The expansion of material informatics in the Asia-Pacific area is also aided by the availability of a big talent pool in data science and materials science, as well as government measures to support research and development.

Key players in the market:

Some of the key players profiled in the Materials Informatics Market include: Alpine Electronics Inc., Phaseshift Technologies, Exabyte.io, Schrodinger, Materials Zone Ltd., Mat3ra, BASF, Citrine Informatics, Nutonian Inc., Dassault Systemes, Kebotix, AI Materia, Lumiant Corporation, Sun Innovations, Mitsubishi, Fujitsu, InSilixa and MRL Materials Resources LLC

Key Developments:

  • In June 2023, ISAE Group and Dassault Systemes Partner to Accelerate the Digital Transformation of the Aerospace Industry, ISAE Group will deploy Dassault Systemes' 3DEXPERIENCE platform in its training programs for 7,000 students.
  • In June 2023, Dassault Aviation and Dassault Systemes Partner to Bring Secure, Sovereign Collaboration on the Cloud to Next Generation Defense Programs, this next step in their long-term collaboration is a key driver of a European sovereign cloud that can influence other sectors such as health care and public services
  • In January 2022, Schrodinger acquired XTAL BioStructures, Inc., a private company that provides structural biology services. The acquisition of XTAL BioStructures enabled Schrodinger to augment its ability to produce high-quality target structures.

Material Types Covered:

  • Chemicals
  • Elements
  • Hybrid Materials
  • Inorganic Materials
  • Organic Materials
  • Other Material Types

Techniques Covered:

  • Digital Annealer
  • Deep Tensor
  • Statistical Analysis
  • Genetic Algorithm

Applications Covered:

  • Chemical & Pharmaceutical
  • Dyes
  • Energy
  • Food Science
  • Manufacturing
  • Materials Science
  • Paper & Pulp
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Materials Informatics Market, By Material Type

  • 5.1 Introduction
  • 5.2 Chemicals
  • 5.3 Elements
  • 5.4 Hybrid Materials
    • 5.4.1 Copolymers
    • 5.4.2 Colloids
  • 5.5 Inorganic Materials
    • 5.5.1 Metals
    • 5.5.2 Alloys
    • 5.5.3 Battery
    • 5.5.4 Other Inorganic Materials
  • 5.6 Organic Materials
    • 5.6.1 Rubber
    • 5.6.2 Additive Agent for Polymer
    • 5.6.3 Other Organic Materials
  • 5.7 Other Material Types

6 Global Materials Informatics Market, By Technique

  • 6.1 Introduction
  • 6.2 Digital Annealer
  • 6.3 Deep Tensor
  • 6.4 Statistical Analysis
  • 6.5 Genetic Algorithm

7 Global Materials Informatics Market, By Application

  • 7.1 Introduction
  • 7.2 Chemical & Pharmaceutical
  • 7.3 Dyes
  • 7.4 Energy
  • 7.5 Food Science
  • 7.6 Manufacturing
  • 7.7 Materials Science
  • 7.8 Paper & Pulp
  • 7.9 Other Applications

8 Global Materials Informatics Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Alpine Electronics Inc.
  • 10.2 Phaseshift Technologies
  • 10.3 Exabyte.io
  • 10.4 Schrodinger
  • 10.5 Materials Zone Ltd.
  • 10.6 Mat3ra
  • 10.7 BASF
  • 10.8 Citrine Informatics
  • 10.9 Nutonian Inc.
  • 10.10 Dassault Systemes
  • 10.11 Kebotix
  • 10.12 AI Materia
  • 10.13 Lumiant Corporation
  • 10.14 Sun Innovations
  • 10.15 Mitsubishi
  • 10.16 Fujitsu
  • 10.17 InSilixa
  • 10.18 MRL Materials Resources LLC

List of Tables

  • Table 1 Global Materials Informatics Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Materials Informatics Market Outlook, By Material Type (2021-2030) ($MN)
  • Table 3 Global Materials Informatics Market Outlook, By Chemicals (2021-2030) ($MN)
  • Table 4 Global Materials Informatics Market Outlook, By Elements (2021-2030) ($MN)
  • Table 5 Global Materials Informatics Market Outlook, By Hybrid Materials (2021-2030) ($MN)
  • Table 6 Global Materials Informatics Market Outlook, By Copolymers (2021-2030) ($MN)
  • Table 7 Global Materials Informatics Market Outlook, By Colloids (2021-2030) ($MN)
  • Table 8 Global Materials Informatics Market Outlook, By Inorganic Materials (2021-2030) ($MN)
  • Table 9 Global Materials Informatics Market Outlook, By Metals (2021-2030) ($MN)
  • Table 10 Global Materials Informatics Market Outlook, By Alloys (2021-2030) ($MN)
  • Table 11 Global Materials Informatics Market Outlook, By Battery (2021-2030) ($MN)
  • Table 12 Global Materials Informatics Market Outlook, By Other Inorganic Materials (2021-2030) ($MN)
  • Table 13 Global Materials Informatics Market Outlook, By Organic Materials (2021-2030) ($MN)
  • Table 14 Global Materials Informatics Market Outlook, By Rubber (2021-2030) ($MN)
  • Table 15 Global Materials Informatics Market Outlook, By Additive Agent for Polymer (2021-2030) ($MN)
  • Table 16 Global Materials Informatics Market Outlook, By Other Organic Materials (2021-2030) ($MN)
  • Table 17 Global Materials Informatics Market Outlook, By Other Material Types (2021-2030) ($MN)
  • Table 18 Global Materials Informatics Market Outlook, By Technique (2021-2030) ($MN)
  • Table 19 Global Materials Informatics Market Outlook, By Digital Annealer (2021-2030) ($MN)
  • Table 20 Global Materials Informatics Market Outlook, By Deep Tensor (2021-2030) ($MN)
  • Table 21 Global Materials Informatics Market Outlook, By Statistical Analysis (2021-2030) ($MN)
  • Table 22 Global Materials Informatics Market Outlook, By Genetic Algorithm (2021-2030) ($MN)
  • Table 23 Global Materials Informatics Market Outlook, By Application (2021-2030) ($MN)
  • Table 24 Global Materials Informatics Market Outlook, By Chemical & Pharmaceutical (2021-2030) ($MN)
  • Table 25 Global Materials Informatics Market Outlook, By Dyes (2021-2030) ($MN)
  • Table 26 Global Materials Informatics Market Outlook, By Energy (2021-2030) ($MN)
  • Table 27 Global Materials Informatics Market Outlook, By Food Science (2021-2030) ($MN)
  • Table 28 Global Materials Informatics Market Outlook, By Manufacturing (2021-2030) ($MN)
  • Table 29 Global Materials Informatics Market Outlook, By Materials Science (2021-2030) ($MN)
  • Table 30 Global Materials Informatics Market Outlook, By Paper & Pulp (2021-2030) ($MN)
  • Table 31 Global Materials Informatics Market Outlook, By Other Applications (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.