封面
市場調查報告書
商品編碼
1489434

2030年衛星太陽能電池材料的市場預測:依太陽能電池類型、材料類型、軌道、應用和地區進行全球分析

Satellite Solar Cell Materials Market Forecasts to 2030 - Global Analysis By Solar Cell Type, Material Type (Silicon, Copper Indium Gallium Selenide, Gallium Arsenide and Other Material Types), Orbit, Application and by Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

據Stratistics MRC稱,2023年全球衛星太陽能電池材料市場規模為3,938萬美元,預計預測期內複合年成長率為15.7%,到2030年將達到1.0929億美元。

衛星太陽能電池為衛星提供可再生太陽能,是太空任務的重要組成部分。這些太陽能電池的材料必須能夠有效地將陽光轉化為電能,同時能夠承受太空旅行的惡劣環境。含有砷化鎵(GaAs)等高性能半導體材料以及磷化鎵銦(GaInP)和砷化銦鎵(InGaAs)等材料的多結電池通常用於製造衛星太陽能電池。

國際太空聯合會(IAF)表示,太空探勘促進國際合作並激勵下一代科學家、工程師和探險家。

增加航太開發投資

由於商業和政府實體在太空探勘任務上的支出增加,衛星太陽能電池材料的市場正在成長。作為研究遙遠行星、小行星和其他天體的太空探勘計畫的一部分,必須部署具有先進太陽能系統的衛星。此外,隨著企業努力擴大太空足跡並抓住新機遇,太空活動的商業化,包括寬頻網路和地球觀測等基於衛星的服務,將用於衛星太陽能電池,這推動了對材料的需求。

太空環境困難

太空的惡劣環境對衛星太陽能電池使用的材料提出了嚴峻的挑戰。快速溫度變化、輻射暴露、小隕石撞擊和太空真空等變數可能會縮短太陽能電池的效率和壽命。特別是隨著時間的推移,輻射會降低太陽能電池的效率,影響衛星的整體發電能力。此外,需要持續的研究和開發來提高衛星太陽能電池所用材料的耐輻射性和耐久性,這增加了製造過程的複雜性和成本。

太空探勘舉措

在月球、火星及其他地方旅行等雄心勃勃的太空探勘計畫的推動下,衛星太陽能電池所用材料市場提供了創新和合作的機會。特別是隨著政府和私人組織開始投資太空探勘,需要現代太陽能系統來支援長期任務和推進太空研究。此外,透過航太機構、學術機構和行業相關人員之間的合作,可以加速針對太空探勘任務特定需求量身定做的創新太陽能電池材料的開發。

與替代能源的競爭

來自替代衛星電源的競爭是威脅衛星太陽能電池材料市場的主要風險之一。儘管大多數衛星仍選擇太陽能,但市場受到核能發電和放射性同位素熱電發電(RTG)等替代發電技術發展的威脅。特別是,RTG 在某些應用中挑戰了太陽能電池的優勢,為深空和日照時間短的地區的任務提供可靠的電源。此外,新的電源管理和能源儲存技術的創建可以擴大衛星製造商的選擇範圍,並減少他們對太陽能的依賴。

COVID-19 的影響:

衛星太陽能電池材料市場受到COVID-19大流行的多方面影響。儘管航太領域表現出了一定的彈性,但供應鏈、製造流程和計劃進度的中斷給材料供應商和衛星製造商帶來了複雜性。由於停工措施、旅行限制和社交距離措施,對太陽能電池材料等衛星零件的需求減少以及衛星發射的延遲,使得業務難以照常進行。此外,疫情帶來的金融扭曲和經濟不確定性進一步減緩了航太計劃的投資,減緩了創新和市場擴張的步伐。

砷化鎵 (GaAs) 領域預計將在預測期內成為最大的領域

衛星太陽能電池材料市場預計將由砷化鎵(GaAs)領域主導。由於其高效率和可靠性,砷化鎵太陽能電池是許多衛星製造商的選擇。砷化鎵太陽能電池比其他材料具有更高的效率,並且具有高抗輻射性,使其在太空環境中表現出色。此外,這些特性使砷化鎵太陽能電池特別適合需要在有限空間內產生最大發電量的深空探勘和地球靜止通訊等任務。

低地球軌道(LEO) 部分預計在預測期內複合年成長率最高

衛星太陽能電池材料市場預計將以最高的複合年成長率成長,其中低地球軌道(LEO)部分。 LEO 衛星的軌道通常在距離地球表面 160 至 2,000 公里的高度之間,非常接近。對低地球軌道 (LEO) 衛星的需求正在增加,因為與高軌道衛星相比,它們可以無延遲地提供高速網路連線、地球觀測和遙感探測服務。此外,SpaceX 的 Starlink 和 OneWeb 等公司正在部署由數百到數千顆小型衛星組成的低地球衛星群,以創建全球寬頻網路。

佔比最大的地區:

衛星太陽能電池所用材料的市場主要由北美地區主導。該地區的主導地位歸因於重要衛星製造商、航太機構和研究機構的強大存在,以及對太空探勘和衛星技術的大量投資。美國和加拿大等國家推動了衛星太陽能電池對先進材料的需求,這些國家擁有強大的航太工業和主導的太空任務記錄。

複合年成長率最高的地區:

在衛星太陽能電池材料市場中,歐洲的複合年成長率最高。由於法國、德國、英國和義大利等國擁有完善的航太工業,歐洲在衛星製造和太空探勘方面擁有強大的立足點。協調成員國之間的太空活動是歐洲太空總署 (ESA) 的重要職責,該局還領導進行需要尖端衛星技術的聯合計劃和研究計畫。此外,該地區對地球觀測、導航和寬頻網路等衛星服務不斷成長的需求正在加速衛星太陽能電池材料的採用。

免費客製化服務:

訂閱此報告的客戶將收到以下免費自訂選項之一:

  • 公司簡介
    • 其他市場參與者的綜合分析(最多 3 家公司)
    • 主要企業SWOT分析(最多3家企業)
  • 區域分割
    • 根據客戶興趣對主要國家的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 資料分析
    • 資料檢驗
    • 研究途徑
  • 研究資訊來源
    • 主要研究資訊來源
    • 二次研究資訊來源
    • 先決條件

第3章市場趨勢分析

  • 促進因素
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 新興市場
  • COVID-19 的影響

第4章波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭公司之間的敵對關係

第5章全球衛星太陽能電池材料市場:依太陽能電池類型

  • 單結太陽能電池
  • 多結太陽能電池
  • 其他太陽能電池類型

第6章全球衛星太陽能電池材料市場:依材料類型

  • 銅銦鎵硒 (CIGS)
  • 砷化鎵 (GaAs)
  • 其他材料類型

第7章 衛星太陽能電池材料的全球市場:依軌道分類

  • 近地軌道 (LEO)
  • 中軌道(MEO)
  • 地球靜止軌道(GEO)
  • 高橢圓軌道 (HEO)
  • 極軌道
  • 其他軌道

第8章全球衛星太陽能電池材料市場:依應用分類

  • 衛星
    • 通訊
    • 地球觀測衛星
    • 導航衛星
    • 軍事和國防衛星
    • 氣象衛星
  • 探勘
  • 太空站
  • 其他用途

第9章全球衛星太陽能電池材料市場:按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東/非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲

第10章 主要進展

  • 合約、夥伴關係、協作和合資企業
  • 收購和合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第11章 公司概況

  • Thales Alenia Space
  • Sharp Corporation
  • Northrop Grumman
  • Airbus
  • MicroLink Devices, Inc.
  • Spectrolab
  • CESI SpA
  • Rocket Lab USA
  • AZUR SPACE Solar Power GmbH
  • Mitsubishi Electric Corporation
Product Code: SMRC26220

According to Stratistics MRC, the Global Satellite Solar Cell Materials Market is accounted for $39.38 million in 2023 and is expected to reach $109.29 million by 2030 growing at a CAGR of 15.7% during the forecast period. Satellite solar cells, which provide satellites with renewable solar energy, are essential parts of space missions. Materials for these cells must be able to endure the hostile environments of space travel while still effectively converting sunlight into electrical power. High-performance semiconductor materials like gallium arsenide (GaAs) or multi-junction cells containing materials like gallium indium phosphide (GaInP) and indium gallium arsenide (InGaAs) are typically used to create satellite solar cells.

According to the International Astronautical Federation (IAF), Space exploration fosters international cooperation and inspires the next generation of scientists, engineers, and explorers.

Market Dynamics:

Driver:

Increasing space exploration investments

The market for satellite solar cell materials is growing as a result of rising expenditures made on space exploration missions by both commercial and governmental entities. Satellites with sophisticated solar power systems must be deployed as part of space exploration programs to study distant planets, asteroids, and other celestial bodies. Furthermore, as businesses strive to increase their footprint in the space sector and seize new opportunities, the commercialization of space activities-including satellite-based services like broadband internet and Earth observation-is driving up demand for the materials used in satellite solar cells.

Restraint:

Difficulties in the space environment

The severe environment in space presents serious difficulties for the materials used in satellite solar cells. The efficiency and lifespan of solar cells can be shortened by variables like sharp temperature changes, radiation exposure, micrometeoroid impacts, and space vacuum. Particularly over time, radiation can reduce the efficiency of solar cells, which can have an effect on the satellites overall capacity to generate power. Additionally, the need for ongoing research and development to improve the materials used in satellite solar cells in terms of their resilience to radiation and durability consequently drives up the complexity and expense of the manufacturing process.

Opportunity:

Initiatives for space exploration

The market for materials used in satellite solar cells offers chances for innovation and cooperation due to ambitious space exploration programs, such as trips to the Moon, Mars, and beyond. Modern solar power systems are required to support extended missions and facilitate space research, especially as governments and private organizations begin to invest in space exploration. Moreover, the development of innovative solar cell materials customized to the specific needs of space exploration missions can be accelerated through cooperative efforts among space agencies, academic institutions, and industry stakeholders.

Threat:

Alternative power source competition

The competition from alternate satellite power sources is one of the main risks to the market for satellite solar cell materials. Although most satellites still choose solar power, the market is being threatened by developments in alternative power generation technologies like nuclear and radioisotope thermoelectric generators (RTGs). RTGs, in particular, challenge the dominance of solar cells in some applications by providing a dependable power source for missions in deep space or locations with little sunlight. Furthermore, the creation of new power management and energy storage technologies may broaden the range of choices accessible to satellite producers and lessen their dependency on solar energy.

Covid-19 Impact:

The satellite solar cell materials market has experienced a variety of effects from the COVID-19 pandemic. Although the space sector has demonstrated resiliency in some instances, complications have arisen for both material suppliers and satellite manufacturers due to disruptions in supply chains, manufacturing processes, and project schedules. There has been a reduction in demand for satellite components, such as solar cell materials, and a delay in satellite launches due to lockdowns, travel restrictions, and social distancing measures that have made it difficult to carry out business as usual. Additionally, investment in space exploration projects has been further slowed down by financial strains and economic uncertainties brought on by the pandemic, which has slowed the rate of innovation and market expansion.

The Gallium Arsenide (GaAs) segment is expected to be the largest during the forecast period

The market for satellite solar cell materials is expected to be dominated by the gallium arsenide (GaAs) segment. Due to their high efficiency and dependability, GaAs solar cells are the solar cells of choice for many satellite manufacturers. GaAs cells are more efficient than other materials and perform exceptionally well in the space environment due to their high radiation resistance. Furthermore, GaAs solar cells are especially well-suited for missions like deep space probes and geostationary communication satellites that require maximum power generation in a constrained amount of space due to these characteristics.

The Low Earth Orbit (LEO) segment is expected to have the highest CAGR during the forecast period

The satellite solar cell materials market is expected to grow at the highest CAGR in the Low Earth Orbit (LEO) segment. LEO satellites normally orbit between 160 and 2,000 kilometers above the surface of the Earth, which is quite close. The increased need for low-Earth orbit (LEO) satellites is due to their capacity to deliver latency-free high-speed internet connectivity, Earth observation, and remote sensing services when compared to higher-orbiting satellites. Moreover, companies like SpaceX's Starlink and OneWeb are deploying LEO constellations, which are made up of hundreds or even thousands of tiny satellites, to build global broadband networks.

Region with largest share:

The market for materials used in satellite solar cells is dominated by the North American region. The strong presence of important satellite manufacturers, space agencies, and research institutions, along with large investments in space exploration and satellite-based technologies, are credited with the region's dominance. The need for cutting-edge materials for satellite solar cells is being driven by nations like the United States and Canada, which have strong aerospace industries and a track record of leading space missions.

Region with highest CAGR:

In the market for satellite solar cell materials, the European region is growing at the highest CAGR. Europe has a solid base in satellite manufacturing and space exploration thanks to the presence of well-established aerospace industries in nations like France, Germany, the United Kingdom, and Italy. Coordinating space activities among its member states is a major responsibility of the European Space Agency (ESA), which also spearheads joint projects and research initiatives requiring cutting-edge satellite technologies. Furthermore, the region is adopting satellite solar cell materials at a faster rate due to the growing demand for satellite-based services like Earth observation, navigation, and broadband internet.

Key players in the market

Some of the key players in Satellite Solar Cell Materials market include Thales Alenia Space, Sharp Corporation, Northrop Grumman, Airbus, MicroLink Devices, Inc., Spectrolab, CESI S.p.A, Rocket Lab USA, AZUR SPACE Solar Power GmbH and Mitsubishi Electric Corporation.

Key Developments:

In April 2024, Northrop Grumman Australia has signed a contract with L3Harris for the operation and maintenance of command-and-control systems aboard the MQ-4C Triton multi-intelligence unmanned aerial vehicle (UAV) fleet of the Royal Australian Air Force (RAAF), Northrop Grumman. The interim sustainment support contract covers maintenance of the Triton's wideband command, control and communications (C3) subsystem, which was developed by L3Harris.

In December 2023, Thales Alenia Space has signed a multi-mission contract with PT Len Industri to provide a state-of-the-art Earth observation constellation combining both radar and optical sensors and dedicated to the Indonesian Ministry of Defence (MoD). As a result, both companies will join forces to deploy an end-to-end system including space and ground segment in Indonesia.

In November 2023, Sharp and Huawei announced the signing of a new long-term global patent cross-licensing agreement, which covers Cellular Standard Essential Patents, including 4G and 5G. We are delighted to reach a new agreement with Sharp through amicable discussions, said Alan Fan, Head of Huawei's Intellectual Property Department.

Solar Cell Types Covered:

  • Single-Junction Solar Cells
  • Multi-Junction Solar Cells
  • Others Solar Cell Types

Material Types Covered:

  • Silicon
  • Copper Indium Gallium Selenide (CIGS)
  • Gallium Arsenide (GaAs)
  • Other Material Types

Orbits Covered:

  • Low Earth Orbit (LEO)
  • Medium Earth Orbit (MEO)
  • Geostationary Orbit (GEO)
  • Highly Elliptical Orbit (HEO)
  • Polar Orbit
  • Other Orbits

Applications Covered:

  • Satellite
  • Rovers
  • Space Stations
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Satellite Solar Cell Materials Market, By Solar Cell Type

  • 5.1 Introduction
  • 5.2 Single-Junction Solar Cells
  • 5.3 Multi-Junction Solar Cells
  • 5.4 Others Solar Cell Types

6 Global Satellite Solar Cell Materials Market, By Material Type

  • 6.1 Introduction
  • 6.2 Silicon
  • 6.3 Copper Indium Gallium Selenide (CIGS)
  • 6.4 Gallium Arsenide (GaAs)
  • 6.5 Other Material Types

7 Global Satellite Solar Cell Materials Market, By Orbit

  • 7.1 Introduction
  • 7.2 Low Earth Orbit (LEO)
  • 7.3 Medium Earth Orbit (MEO)
  • 7.4 Geostationary Orbit (GEO)
  • 7.5 Highly Elliptical Orbit (HEO)
  • 7.6 Polar Orbit
  • 7.7 Other Orbits

8 Global Satellite Solar Cell Materials Market, By Application

  • 8.1 Introduction
  • 8.2 Satellite
    • 8.2.1 Communication Satellites
    • 8.2.2 Earth Observation Satellites
    • 8.2.3 Navigation Satellites
    • 8.2.4 Military and Defense Satellites
    • 8.2.5 Weather Satellites
  • 8.3 Rovers
  • 8.4 Space Stations
  • 8.5 Other Applications

9 Global Satellite Solar Cell Materials Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Thales Alenia Space
  • 11.2 Sharp Corporation
  • 11.3 Northrop Grumman
  • 11.4 Airbus
  • 11.5 MicroLink Devices, Inc.
  • 11.6 Spectrolab
  • 11.7 CESI S.p.A
  • 11.8 Rocket Lab USA
  • 11.9 AZUR SPACE Solar Power GmbH
  • 11.10 Mitsubishi Electric Corporation

List of Tables

  • Table 1 Global Satellite Solar Cell Materials Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Satellite Solar Cell Materials Market Outlook, By Solar Cell Type (2021-2030) ($MN)
  • Table 3 Global Satellite Solar Cell Materials Market Outlook, By Single-Junction Solar Cells (2021-2030) ($MN)
  • Table 4 Global Satellite Solar Cell Materials Market Outlook, By Multi-Junction Solar Cells (2021-2030) ($MN)
  • Table 5 Global Satellite Solar Cell Materials Market Outlook, By Others Solar Cell Types (2021-2030) ($MN)
  • Table 6 Global Satellite Solar Cell Materials Market Outlook, By Material Type (2021-2030) ($MN)
  • Table 7 Global Satellite Solar Cell Materials Market Outlook, By Silicon (2021-2030) ($MN)
  • Table 8 Global Satellite Solar Cell Materials Market Outlook, By Copper Indium Gallium Selenide (CIGS) (2021-2030) ($MN)
  • Table 9 Global Satellite Solar Cell Materials Market Outlook, By Gallium Arsenide (GaAs) (2021-2030) ($MN)
  • Table 10 Global Satellite Solar Cell Materials Market Outlook, By Other Material Types (2021-2030) ($MN)
  • Table 11 Global Satellite Solar Cell Materials Market Outlook, By Orbit (2021-2030) ($MN)
  • Table 12 Global Satellite Solar Cell Materials Market Outlook, By Low Earth Orbit (LEO) (2021-2030) ($MN)
  • Table 13 Global Satellite Solar Cell Materials Market Outlook, By Medium Earth Orbit (MEO) (2021-2030) ($MN)
  • Table 14 Global Satellite Solar Cell Materials Market Outlook, By Geostationary Orbit (GEO) (2021-2030) ($MN)
  • Table 15 Global Satellite Solar Cell Materials Market Outlook, By Highly Elliptical Orbit (HEO) (2021-2030) ($MN)
  • Table 16 Global Satellite Solar Cell Materials Market Outlook, By Polar Orbit (2021-2030) ($MN)
  • Table 17 Global Satellite Solar Cell Materials Market Outlook, By Other Orbits (2021-2030) ($MN)
  • Table 18 Global Satellite Solar Cell Materials Market Outlook, By Application (2021-2030) ($MN)
  • Table 19 Global Satellite Solar Cell Materials Market Outlook, By Satellite (2021-2030) ($MN)
  • Table 20 Global Satellite Solar Cell Materials Market Outlook, By Communication Satellites (2021-2030) ($MN)
  • Table 21 Global Satellite Solar Cell Materials Market Outlook, By Earth Observation Satellites (2021-2030) ($MN)
  • Table 22 Global Satellite Solar Cell Materials Market Outlook, By Navigation Satellites (2021-2030) ($MN)
  • Table 23 Global Satellite Solar Cell Materials Market Outlook, By Military and Defense Satellites (2021-2030) ($MN)
  • Table 24 Global Satellite Solar Cell Materials Market Outlook, By Weather Satellites (2021-2030) ($MN)
  • Table 25 Global Satellite Solar Cell Materials Market Outlook, By Rovers (2021-2030) ($MN)
  • Table 26 Global Satellite Solar Cell Materials Market Outlook, By Space Stations (2021-2030) ($MN)
  • Table 27 Global Satellite Solar Cell Materials Market Outlook, By Other Applications (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.