封面
市場調查報告書
商品編碼
1503376

儲氫合金市場預測至 2030 年 - 按類型(金屬氫化物、複合氫化物、金屬間化合物、化學氫化物和其他類型)、儲存容量、銷售通路、技術、應用和地理位置進行全球分析

Hydrogen Storage Alloys Market Forecasts to 2030 - Global Analysis By Type (Metal Hydrides, Complex Hydrides, Intermetallic Compounds, Chemical Hydrides and Other Types), Storage Capacity, Sales Channel, Technology, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,2024 年全球儲氫合金市場規模為 35.4 億美元,預計到 2030 年將達到 52.1 億美元,預測期內複合年成長率為 7.8%。儲氫合金是能夠透過可逆化學反應吸收和釋放氫氣的材料。這些合金通常由鎳、鈦或稀土元素等金屬組成,在吸收氫時會形成金屬氫化物。它們的主要用途是在氫儲存系統中,為燃料電池和能源儲存等各種應用提供安全、高效的氫儲存方式。這些合金因其高儲存容量、穩定性以及在特定條件下以可控速率釋放氫的能力而受到重視。

據國際能源總署稱,透過電解機制產生的氫氣在未來具有巨大的潛力,並顯示出作為廉價燃料選擇的巨大前景。

市場動態:

司機:

對清潔能源的需求不斷成長

儲氫合金在儲存氫氣(一種清潔能源載體)方面發揮關鍵作用,以便日後用於燃料電池和其他應用。隨著產業和政府轉向再生能源以減少碳排放,對儲氫技術的需求不斷增加。這推動了儲氫合金的進步和投資,提高其效率、容量和成本效益,從而促進市場成長。

克制:

基礎設施限制

加氫站稀缺等基礎設施限制對儲氫合金市場構成了重大挑戰。有限的基礎設施阻礙了氫燃料電池汽車的廣泛採用,限制了對這些合金的需求。此外,建立加氫基礎設施的高成本阻礙了投資和採用,從而減緩了市場成長。

機會:

汽車業的採用率不斷上升

氫合金對於燃料電池中有效儲存和釋放氫氣至關重要,而燃料電池對於車輛運作至關重要。隨著對環保交通解決方案的需求增加,汽車製造商正在增加對氫燃料電池技術的投資。這推動了對先進儲氫解決方案的需求,從而推動了儲氫合金市場的發展。對減少碳排放的加強關注進一步加速了這一成長趨勢。

威脅:

來自替代技術的競爭

來自壓縮氫氣和碳基材料等替代技術的競爭對儲氫合金市場構成了挑戰。壓縮氫提供了更簡單的基礎設施和更低的成本,而碳基材料則有望提供更高的儲存容量。這些替代品透過提供有競爭力的儲存解決方案來阻礙合金市場,這些解決方案可能被認為更具成本效益或技術先進,可能會轉移對儲氫合金的投資和研究。

Covid-19 影響

由於供應鏈中斷、關鍵產業需求下降和專案延遲,covid-19大流行擾亂了儲氫合金市場。儘管遇到這些挫折,但在全球重視永續發展和減少碳排放的推動下,隨著對清潔能源和氫技術的投資不斷增加,市場有望復甦。大流行後對綠色能源的關注預計將推動該行業的長期成長。

複合氫化物部分預計將在預測期內成為最大的部分

複合氫化物領域預計將出現利潤豐厚的成長。複合氫化物是一種儲氫合金,其特徵在於複雜的分子結構,可實現高儲氫容量。它們包括鋁氫化物和硼氫化物等材料,這些材料以其在中等溫度和壓力下儲存和釋放氫氣的能力而聞名。複雜氫化物對於需要緊湊高效儲氫解決方案的應用很有前景,例如燃料電池汽車和攜帶式電子產品,旨在推進永續能源技術。

化學吸收技術領域預計在預測期內複合年成長率最高

預計化學吸收技術領域在預測期內將出現最快的複合年成長率。儲氫合金中的化學吸收技術涉及吸收和釋放氫的可逆化學反應。該過程通常使用金屬氫化物等材料,這些材料在某些條件下吸收氫氣並在條件變化時釋放氫氣。它是一種安全、密集儲存氫氣的有效方法,對於尋求可靠氫氣供應和分配的燃料電池、攜帶式電子產品和儲能系統中的應用至關重要。

佔比最大的地區:

由於對再生能源和氫燃料技術的投資不斷增加,亞太地區的儲氫合金市場正在經歷顯著成長。日本、韓國和中國等國家在政府大力支持和旨在發展氫經濟的工業措施方面處於領先地位。日本的「氫基本戰略」和韓國的氫路線圖反映了這一承諾。此外,汽車行業向氫燃料電池汽車的轉變以及儲能技術的進步進一步推動了該地區的市場擴張。

複合年成長率最高的地區:

在清潔能源解決方案投資增加和氫基礎設施發展的推動下,北美儲氫合金市場正在強勁成長。美國和加拿大處於領先地位,政府和私營部門採取了大量措施支持氫儲存和燃料電池技術。美國能源部將氫作為實現能源獨立和減少碳排放的關鍵要素,強調了這一趨勢。此外,產業領導者和研究機構之間的合作正在促進儲氫材料的進步,並增強市場前景。

主要進展:

2023年4月,領先的綜合氫能技術解決方案供應商Hydrexia能源科技(中國)(Hydrexia)宣布推出其創新型金屬氫化物拖車(MH-100T),用於氫氣儲存和分配。

2022年8月,LAVO推出新型金屬氫化物合金儲能技術。由 LAVO 領導的合作計劃還包括 UNSW、Design + Industry、Providence、GHD、Varley 和 Greater Springfield,已獲得 AMGC 的 221,875 美元聯合投資。

我們的報告提供了什麼:

  • 區域和國家層面的市場佔有率評估
  • 對新進入者的策略建議
  • 涵蓋2022年、2023年、2024年、2026年及2030年的市場資料
  • 市場趨勢(促進因素、限制因素、機會、威脅、挑戰、投資機會和建議)
  • 根據市場預測提出關鍵業務部門的策略建議
  • 競爭性景觀美化繪製主要共同趨勢
  • 公司概況,包括詳細的策略、財務狀況和最新發展
  • 反映最新技術進步的供應鏈趨勢

免費客製化產品:

本報告的所有客戶都將有權獲得以下免費自訂選項之一:

  • 公司簡介
    • 其他市場參與者的綜合分析(最多 3 個)
    • 關鍵參與者的 SWOT 分析(最多 3 個)
  • 區域細分
    • 根據客戶的興趣對任何主要國家的市場估計、預測和複合年成長率(註:取決於可行性檢查)
  • 競爭基準化分析
    • 根據產品組合、地理分佈和策略聯盟對主要參與者基準化分析

目錄

第 1 章:執行摘要

第 2 章:前言

  • 抽象的
  • 股東
  • 研究範圍
  • 研究方法論
    • 資料探勘
    • 數據分析
    • 數據驗證
    • 研究方法
  • 研究來源
    • 主要研究來源
    • 二手研究來源
    • 假設

第 3 章:市場趨勢分析

  • 介紹
  • 促進要素
  • 限制
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 新興市場
  • Covid-19 的影響

第 4 章:波特五力分析

  • 供應商的議價能力
  • 買家的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭競爭

第 5 章:全球儲氫合金市場:按類型

  • 介紹
  • 金屬氫化物
  • 複合氫化物
  • 金屬間化合物
  • 化學氫化物
  • 其他類型

第 6 章:全球儲氫合金市場:按儲存容量分類

  • 介紹
  • 低容量合金
  • 中等容量合金
  • 高容量合金

第 7 章:全球儲氫合金市場:按銷售管道

  • 介紹
  • 直銷
  • 分銷商/批發商
  • 網路零售
  • 第三方線上平台
  • 其他銷售管道

第 8 章:全球儲氫合金市場:依技術分類

  • 介紹
  • 氫化物技術
  • 物理吸附技術
  • 化學吸收技術

第 9 章:全球儲氫合金市場:依應用分類

  • 介紹
  • 運輸
  • 醫療的
  • 電子產品
  • 工業應用
  • 再生能源儲存
  • 其他應用

第 10 章:全球儲氫合金市場:依地理位置

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 歐洲其他地區
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太地區其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 中東和非洲其他地區

第 11 章:主要進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 擴充
  • 其他關鍵策略

第 12 章:公司概況

  • BASF SE
  • AMETEK Specialty Metal Products
  • Mitsui Kinzoku ACT Corporation
  • Linde PLC
  • ESG Edelmetall-Service GmbH & Co. KG
  • Hitachi Corporation
  • Hydrogenious LOHC Technologies GmbH
  • ICL - Industrial Commodity Holdings
  • INFINIUM Metals
  • Magnesium Elektron Limited
  • Materion Corporation
  • Air Liquide S.A
  • China Rare Metal Material Corporation
  • Neo Performance Materials Inc.
  • Sandvik Materials Technology
  • ABSCO Limited
  • Hydrexia Energy Technology
  • LAVO System
Product Code: SMRC26543

According to Stratistics MRC, the Global Hydrogen Storage Alloys Market is accounted for $3.54 billion in 2024 and is expected to reach $5.21 billion by 2030 growing at a CAGR of 7.8% during the forecast period. Hydrogen storage alloys are materials that can absorb and release hydrogen gas through reversible chemical reactions. These alloys, often composed of metals such as nickel, titanium, or rare earth elements, form metal hydrides when they absorb hydrogen. Their primary use is in hydrogen storage systems, providing a safe, efficient means to store hydrogen for various applications, including fuel cells and energy storage. These alloys are valued for their high storage capacity, stability, and ability to release hydrogen at controllable rates under specific conditions.

According to the International Energy Agency, hydrogen produced via an electrolysis mechanism offers enormous potential for the future and shows great promise as a cheap fuel option.

Market Dynamics:

Driver:

Growing demand for clean energy

Hydrogen storage alloys play a critical role in storing hydrogen, a clean energy carrier, for later use in fuel cells and other applications. As industries and governments shift towards renewable energy sources to reduce carbon emissions, the demand for hydrogen storage technologies rises. This drives advancements and investments in hydrogen storage alloys, enhancing their efficiency, capacity, and cost-effectiveness, thereby boosting market growth.

Restraint:

Infrastructure limitations

Infrastructure limitations such as the scarcity of hydrogen refuelling stations pose a significant challenge to the hydrogen storage alloys market. Limited infrastructure hampers the widespread adoption of hydrogen fuel cell vehicles, restricting the demand for these alloys. Additionally, the high cost associated with establishing hydrogen refuelling infrastructure deters investment and adoption, thereby slowing down market growth.

Opportunity:

Rising adoption in automotive sector

Hydrogen alloys are essential for efficiently storing and releasing hydrogen in fuel cells, which are crucial for vehicle operation. As the demand for eco-friendly transportation solutions increases, automakers are investing more in hydrogen fuel cell technology. This drives the need for advanced hydrogen storage solutions, thus boosting the market for hydrogen storage alloys. Enhanced focus on reducing carbon emissions further accelerates this growth trend.

Threat:

Competition from alternative technologies

Competition from alternative technologies like compressed hydrogen gas and carbon-based materials pose a challenge to the hydrogen storage alloys market. Compressed hydrogen offers a simpler infrastructure and lower costs, while carbon-based materials promise higher storage capacities. These alternatives hamper the alloys market by providing competitive storage solutions that may be perceived as more cost-effective or technologically advanced, potentially diverting investment and research away from hydrogen storage alloys.

Covid-19 Impact

The covid-19 pandemic disrupted the hydrogen storage alloys market due to supply chain interruptions, decreased demand from key industries, and delayed projects. Despite these setbacks, the market is poised for recovery with increasing investments in clean energy and hydrogen technologies, spurred by the global emphasis on sustainable development and reducing carbon emissions. The post-pandemic focus on green energy is expected to drive long-term growth in this sector.

The complex hydrides segment is expected to be the largest during the forecast period

The complex hydrides segment is estimated to have a lucrative growth. Complex hydrides are a type of hydrogen storage alloy characterized by intricate molecular structures that enable high hydrogen storage capacities. They include materials like alanates and borohydrides, known for their ability to store and release hydrogen at moderate temperatures and pressures. Complex hydrides are promising for applications requiring compact and efficient hydrogen storage solutions, such as fuel cell vehicles and portable electronics, aiming to advance sustainable energy technologies.

The chemical absorption technology segment is expected to have the highest CAGR during the forecast period

The chemical absorption technology segment is anticipated to witness the fastest CAGR growth during the forecast period. Chemical absorption technology in hydrogen storage alloys involves reversible chemical reactions where hydrogen is absorbed and released. This process typically utilizes materials like metal hydrides, which absorb hydrogen under certain conditions and release it when conditions change. It's an efficient method for storing hydrogen safely and densely, crucial for applications in fuel cells, portable electronics, and energy storage systems seeking reliable hydrogen supply and distribution.

Region with largest share:

The hydrogen storage alloys market in the Asia Pacific region is experiencing significant growth due to increasing investments in renewable energy and hydrogen fuel technologies. Countries like Japan, South Korea, and China are leading the charge with substantial government support and industrial initiatives aimed at developing hydrogen economies. Japan's "Basic Hydrogen Strategy" and South Korea's hydrogen roadmap exemplify this commitment. Additionally, the automotive sector's shift towards hydrogen fuel cell vehicles and advancements in energy storage technologies further propel market expansion in this region.

Region with highest CAGR:

The hydrogen storage alloys market in North America is witnessing robust growth driven by rising investments in clean energy solutions and the development of hydrogen infrastructure. The U.S. and Canada are at the forefront, with substantial governmental and private sector initiatives supporting hydrogen storage and fuel cell technologies. The U.S. Department of Energy's focus on hydrogen as a key element in achieving energy independence and reducing carbon emissions underscores this trend. Moreover, collaborations between industry leaders and research institutions are fostering advancements in hydrogen storage materials, enhancing market prospects.

Key players in the market

Some of the key players profiled in the Hydrogen Storage Alloys Market include BASF SE, AMETEK Specialty Metal Products, Mitsui Kinzoku ACT Corporation, Linde PLC, ESG Edelmetall-Service GmbH & Co. KG, Hitachi Corporation, Hydrogenious LOHC Technologies GmbH, ICL - Industrial Commodity Holdings, INFINIUM Metals, Magnesium Elektron Limited, Materion Corporation, Air Liquide S.A, China Rare Metal Material Corporation, Neo Performance Materials Inc., Sandvik Materials Technology, ABSCO Limited, Hydrexia Energy Technology and LAVO System.

Key Developments:

In April 2023, Hydrexia Energy Technology (China) (Hydrexia), a leading integrated hydrogen technology solution provider, has announced the launch of its innovative Metal Hydride Trailer (MH-100T) for hydrogen storage and distribution.

In August 2022, LAVO unveils new metal hydride alloy energy storage technology. The LAVO-led collaborative initiative, which also includes UNSW, Design + Industry, Providence, GHD, Varley, and Greater Springfield, has received a $221,875 co-investment from AMGC.

Types Covered:

  • Metal Hydrides
  • Complex Hydrides
  • Intermetallic Compounds
  • Chemical Hydrides
  • Other Types

Storage Capacities Covered:

  • Low Capacity Alloys
  • Medium Capacity Alloys
  • High Capacity Alloys

Sales Channels Covered:

  • Direct Sales
  • Distributors/Wholesalers
  • Online Retail
  • Third-party Online Platforms
  • Other Sales Channels

Technologies Covered:

  • Hydride Technology
  • Physical Adsorption Technology
  • Chemical Absorption Technology

Applications Covered:

  • Transportation
  • Medical
  • Electronics
  • Industrial Applications
  • Renewable Energy Storage
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Hydrogen Storage Alloys Market, By Type

  • 5.1 Introduction
  • 5.2 Metal Hydrides
  • 5.3 Complex Hydrides
  • 5.4 Intermetallic Compounds
  • 5.5 Chemical Hydrides
  • 5.6 Other Types

6 Global Hydrogen Storage Alloys Market, By Storage Capacity

  • 6.1 Introduction
  • 6.2 Low Capacity Alloys
  • 6.3 Medium Capacity Alloys
  • 6.4 High Capacity Alloys

7 Global Hydrogen Storage Alloys Market, By Sales Channel

  • 7.1 Introduction
  • 7.2 Direct Sales
  • 7.3 Distributors/Wholesalers
  • 7.4 Online Retail
  • 7.5 Third-party Online Platforms
  • 7.6 Other Sales Channels

8 Global Hydrogen Storage Alloys Market, By Technology

  • 8.1 Introduction
  • 8.2 Hydride Technology
  • 8.3 Physical Adsorption Technology
  • 8.4 Chemical Absorption Technology

9 Global Hydrogen Storage Alloys Market, By Application

  • 9.1 Introduction
  • 9.2 Transportation
  • 9.3 Medical
  • 9.4 Electronics
  • 9.5 Industrial Applications
  • 9.6 Renewable Energy Storage
  • 9.7 Other Applications

10 Global Hydrogen Storage Alloys Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 BASF SE
  • 12.2 AMETEK Specialty Metal Products
  • 12.3 Mitsui Kinzoku ACT Corporation
  • 12.4 Linde PLC
  • 12.5 ESG Edelmetall-Service GmbH & Co. KG
  • 12.6 Hitachi Corporation
  • 12.7 Hydrogenious LOHC Technologies GmbH
  • 12.8 ICL - Industrial Commodity Holdings
  • 12.9 INFINIUM Metals
  • 12.10 Magnesium Elektron Limited
  • 12.11 Materion Corporation
  • 12.12 Air Liquide S.A
  • 12.13 China Rare Metal Material Corporation
  • 12.14 Neo Performance Materials Inc.
  • 12.15 Sandvik Materials Technology
  • 12.16 ABSCO Limited
  • 12.17 Hydrexia Energy Technology
  • 12.18 LAVO System

List of Tables

  • Table 1 Global Hydrogen Storage Alloys Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Hydrogen Storage Alloys Market Outlook, By Type (2022-2030) ($MN)
  • Table 3 Global Hydrogen Storage Alloys Market Outlook, By Metal Hydrides (2022-2030) ($MN)
  • Table 4 Global Hydrogen Storage Alloys Market Outlook, By Complex Hydrides (2022-2030) ($MN)
  • Table 5 Global Hydrogen Storage Alloys Market Outlook, By Intermetallic Compounds (2022-2030) ($MN)
  • Table 6 Global Hydrogen Storage Alloys Market Outlook, By Chemical Hydrides (2022-2030) ($MN)
  • Table 7 Global Hydrogen Storage Alloys Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 8 Global Hydrogen Storage Alloys Market Outlook, By Storage Capacity (2022-2030) ($MN)
  • Table 9 Global Hydrogen Storage Alloys Market Outlook, By Low Capacity Alloys (2022-2030) ($MN)
  • Table 10 Global Hydrogen Storage Alloys Market Outlook, By Medium Capacity Alloys (2022-2030) ($MN)
  • Table 11 Global Hydrogen Storage Alloys Market Outlook, By High Capacity Alloys (2022-2030) ($MN)
  • Table 12 Global Hydrogen Storage Alloys Market Outlook, By Sales Channel (2022-2030) ($MN)
  • Table 13 Global Hydrogen Storage Alloys Market Outlook, By Direct Sales (2022-2030) ($MN)
  • Table 14 Global Hydrogen Storage Alloys Market Outlook, By Distributors/Wholesalers (2022-2030) ($MN)
  • Table 15 Global Hydrogen Storage Alloys Market Outlook, By Online Retail (2022-2030) ($MN)
  • Table 16 Global Hydrogen Storage Alloys Market Outlook, By Third-party Online Platforms (2022-2030) ($MN)
  • Table 17 Global Hydrogen Storage Alloys Market Outlook, By Other Sales Channels (2022-2030) ($MN)
  • Table 18 Global Hydrogen Storage Alloys Market Outlook, By Technology (2022-2030) ($MN)
  • Table 19 Global Hydrogen Storage Alloys Market Outlook, By Hydride Technology (2022-2030) ($MN)
  • Table 20 Global Hydrogen Storage Alloys Market Outlook, By Physical Adsorption Technology (2022-2030) ($MN)
  • Table 21 Global Hydrogen Storage Alloys Market Outlook, By Chemical Absorption Technology (2022-2030) ($MN)
  • Table 22 Global Hydrogen Storage Alloys Market Outlook, By Application (2022-2030) ($MN)
  • Table 23 Global Hydrogen Storage Alloys Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 24 Global Hydrogen Storage Alloys Market Outlook, By Medical (2022-2030) ($MN)
  • Table 25 Global Hydrogen Storage Alloys Market Outlook, By Electronics (2022-2030) ($MN)
  • Table 26 Global Hydrogen Storage Alloys Market Outlook, By Industrial Applications (2022-2030) ($MN)
  • Table 27 Global Hydrogen Storage Alloys Market Outlook, By Renewable Energy Storage (2022-2030) ($MN)
  • Table 28 Global Hydrogen Storage Alloys Market Outlook, By Other Applications (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.